Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import sys | |
| from typing import Sequence, Mapping, Any, Union | |
| import torch | |
| from PIL import Image | |
| from huggingface_hub import hf_hub_download | |
| import spaces | |
| import subprocess, sys | |
| # --------------------------------------------------------------------------------- | |
| # 🛠️ Monkey-patch для gradio_client: игнорируем булевы схемы и не падаем на TypeError | |
| # --------------------------------------------------------------------------------- | |
| import gradio_client.utils as _gc_utils | |
| # Сохраняем оригинальные функции | |
| _orig_js2pt = _gc_utils._json_schema_to_python_type | |
| _orig_get_type = _gc_utils.get_type | |
| def _safe_json_schema_to_python_type(schema, defs=None): | |
| """ | |
| Если schema — bool (True/False), возвращаем 'Any', | |
| иначе — вызываем оригинальный код. | |
| """ | |
| if isinstance(schema, bool): | |
| return "Any" | |
| return _orig_js2pt(schema, defs) | |
| def _safe_get_type(schema): | |
| """ | |
| Если schema — bool, возвращаем 'Any', | |
| иначе — вызываем оригинальную функцию get_type. | |
| """ | |
| if isinstance(schema, bool): | |
| return "Any" | |
| return _orig_get_type(schema) | |
| # Заменяем в модуле | |
| _gc_utils._json_schema_to_python_type = _safe_json_schema_to_python_type | |
| _gc_utils.get_type = _safe_get_type | |
| # --------------------------------------------------------------------------------- | |
| # Дальше уже можно безопасно импортировать Gradio | |
| import gradio | |
| import gradio_client | |
| import gradio as gr | |
| print("gradio version:", gradio.__version__) | |
| print("gradio_client version:", gradio_client.__version__) | |
| hf_hub_download(repo_id="ezioruan/inswapper_128.onnx", filename="inswapper_128.onnx", local_dir="models/insightface") | |
| hf_hub_download(repo_id="martintomov/comfy", filename="facerestore_models/GPEN-BFR-512.onnx", local_dir="models") | |
| hf_hub_download(repo_id="darkeril/collection", filename="detection_Resnet50_Final.pth", local_dir="models/facedetection") | |
| hf_hub_download(repo_id="gmk123/GFPGAN", filename="parsing_parsenet.pth", local_dir="models/facedetection") | |
| hf_hub_download(repo_id="MonsterMMORPG/tools", filename="1k3d68.onnx", local_dir="models/insightface/models/buffalo_l") | |
| hf_hub_download(repo_id="MonsterMMORPG/tools", filename="2d106det.onnx", local_dir="models/insightface/models/buffalo_l") | |
| hf_hub_download(repo_id="maze/faceX", filename="det_10g.onnx", local_dir="models/insightface/models/buffalo_l") | |
| hf_hub_download(repo_id="typhoon01/aux_models", filename="genderage.onnx", local_dir="models/insightface/models/buffalo_l") | |
| hf_hub_download(repo_id="maze/faceX", filename="w600k_r50.onnx", local_dir="models/insightface/models/buffalo_l") | |
| hf_hub_download(repo_id="vladmandic/insightface-faceanalysis", filename="buffalo_l.zip", local_dir="models/insightface/models/buffalo_l") | |
| def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
| """Returns the value at the given index of a sequence or mapping. | |
| If the object is a sequence (like list or string), returns the value at the given index. | |
| If the object is a mapping (like a dictionary), returns the value at the index-th key. | |
| Some return a dictionary, in these cases, we look for the "results" key | |
| Args: | |
| obj (Union[Sequence, Mapping]): The object to retrieve the value from. | |
| index (int): The index of the value to retrieve. | |
| Returns: | |
| Any: The value at the given index. | |
| Raises: | |
| IndexError: If the index is out of bounds for the object and the object is not a mapping. | |
| """ | |
| try: | |
| return obj[index] | |
| except KeyError: | |
| return obj["result"][index] | |
| def find_path(name: str, path: str = None) -> str: | |
| """ | |
| Recursively looks at parent folders starting from the given path until it finds the given name. | |
| Returns the path as a Path object if found, or None otherwise. | |
| """ | |
| # If no path is given, use the current working directory | |
| if path is None: | |
| path = os.getcwd() | |
| # Check if the current directory contains the name | |
| if name in os.listdir(path): | |
| path_name = os.path.join(path, name) | |
| print(f"{name} found: {path_name}") | |
| return path_name | |
| # Get the parent directory | |
| parent_directory = os.path.dirname(path) | |
| # If the parent directory is the same as the current directory, we've reached the root and stop the search | |
| if parent_directory == path: | |
| return None | |
| # Recursively call the function with the parent directory | |
| return find_path(name, parent_directory) | |
| def add_comfyui_directory_to_sys_path() -> None: | |
| """ | |
| Add 'ComfyUI' to the sys.path | |
| """ | |
| comfyui_path = find_path("ComfyUI") | |
| if comfyui_path is not None and os.path.isdir(comfyui_path): | |
| sys.path.append(comfyui_path) | |
| print(f"'{comfyui_path}' added to sys.path") | |
| def add_extra_model_paths() -> None: | |
| """ | |
| Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. | |
| """ | |
| try: | |
| from main import load_extra_path_config | |
| except ImportError: | |
| print( | |
| "Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead." | |
| ) | |
| from utils.extra_config import load_extra_path_config | |
| extra_model_paths = find_path("extra_model_paths.yaml") | |
| if extra_model_paths is not None: | |
| load_extra_path_config(extra_model_paths) | |
| else: | |
| print("Could not find the extra_model_paths config file.") | |
| add_comfyui_directory_to_sys_path() | |
| add_extra_model_paths() | |
| def import_custom_nodes() -> None: | |
| """Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS | |
| This function sets up a new asyncio event loop, initializes the PromptServer, | |
| creates a PromptQueue, and initializes the custom nodes. | |
| """ | |
| import asyncio | |
| import execution | |
| from nodes import init_extra_nodes | |
| import server | |
| # Creating a new event loop and setting it as the default loop | |
| loop = asyncio.new_event_loop() | |
| asyncio.set_event_loop(loop) | |
| # Creating an instance of PromptServer with the loop | |
| server_instance = server.PromptServer(loop) | |
| execution.PromptQueue(server_instance) | |
| # Initializing custom nodes | |
| init_extra_nodes() | |
| import_custom_nodes() | |
| from nodes import NODE_CLASS_MAPPINGS | |
| def generate_image(source_image, target_image, restore_strength, target_index): | |
| with torch.inference_mode(): | |
| loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() | |
| loadimage_1 = loadimage.load_image(image=target_image) | |
| loadimage_3 = loadimage.load_image(image=source_image) | |
| reactorfaceswap = NODE_CLASS_MAPPINGS["ReActorFaceSwap"]() | |
| saveimage = NODE_CLASS_MAPPINGS["SaveImage"]() | |
| reactorfaceswap_2 = reactorfaceswap.execute( | |
| enabled=True, | |
| swap_model="inswapper_128.onnx", | |
| facedetection="retinaface_resnet50", | |
| face_restore_model="GPEN-BFR-512.onnx", | |
| face_restore_visibility=restore_strength, | |
| codeformer_weight=0.5, | |
| detect_gender_input="no", | |
| detect_gender_source="no", | |
| input_faces_index=str(target_index), # Преобразуем в строку | |
| source_faces_index="0", | |
| console_log_level=1, | |
| input_image=get_value_at_index(loadimage_1, 0), | |
| source_image=get_value_at_index(loadimage_3, 0), | |
| ) | |
| saveimage_4 = saveimage.save_images( | |
| filename_prefix="ComfyUI", | |
| images=get_value_at_index(reactorfaceswap_2, 0), | |
| ) | |
| saved_path = f"output/{saveimage_4['ui']['images'][0]['filename']}" | |
| return saved_path | |
| if __name__ == "__main__": | |
| with gr.Blocks() as app: | |
| # Add a title | |
| gr.Markdown("# ComfyUI Reactor Fast Face Swap") | |
| gr.Markdown("ComfyUI Reactor Fast Face Swap running directly on Gradio. - [How to convert your any ComfyUI workflow to Gradio](https://huggingface.co/blog/run-comfyui-workflows-on-spaces)") | |
| with gr.Row(): | |
| with gr.Column(): | |
| # Add an input | |
| # prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...") | |
| # Add a `Row` to include the groups side by side | |
| with gr.Row(): | |
| # First group includes structure image and depth strength | |
| with gr.Group(): | |
| source_image = gr.Image(label="Source Image", type="filepath") | |
| # depth_strength = gr.Slider(minimum=0, maximum=50, value=15, label="Depth Strength") | |
| # Second group includes style image and style strength | |
| with gr.Group(): | |
| target_image = gr.Image(label="Target Image", type="filepath") | |
| restore_strength = gr.Slider(minimum=0, maximum=1, step=0.05, value=0.7, label="Face Restore Strength") | |
| target_index = gr.Dropdown(choices=[0, 1, 2, 3, 4], value=0, label="Target Face Index") | |
| gr.Markdown("Index_0 = Largest Face. To switch for another target face - switch to Index_1, e.t.c") | |
| # The generate button | |
| generate_btn = gr.Button("Generate") | |
| with gr.Column(): | |
| # The output image | |
| output_image = gr.Image(label="Generated Image") | |
| # When clicking the button, it will trigger the `generate_image` function, with the respective inputs | |
| # and the output an image | |
| generate_btn.click( | |
| fn=generate_image, | |
| inputs=[source_image, target_image, restore_strength, target_index], | |
| outputs=[output_image] | |
| ) | |
| app.launch(share=True) |