Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -41,33 +41,53 @@ def init_llm():
|
|
| 41 |
)
|
| 42 |
|
| 43 |
|
|
|
|
|
|
|
| 44 |
def process_document(file):
|
| 45 |
-
"""Process uploaded PDF and create a retriever"""
|
| 46 |
global conversation_retrieval_chain
|
| 47 |
|
| 48 |
if not llm_pipeline or not embeddings:
|
| 49 |
init_llm()
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
return "π PDF uploaded and processed successfully! You can now ask questions."
|
| 71 |
|
| 72 |
|
| 73 |
def process_prompt(prompt, chat_history_display):
|
|
|
|
| 41 |
)
|
| 42 |
|
| 43 |
|
| 44 |
+
import time
|
| 45 |
+
|
| 46 |
def process_document(file):
|
|
|
|
| 47 |
global conversation_retrieval_chain
|
| 48 |
|
| 49 |
if not llm_pipeline or not embeddings:
|
| 50 |
init_llm()
|
| 51 |
|
| 52 |
+
start_time = time.time()
|
| 53 |
+
print(f"π Uploading PDF: {file.name}")
|
| 54 |
+
|
| 55 |
+
try:
|
| 56 |
+
# β
Ensure file is saved correctly
|
| 57 |
+
file_path = os.path.join("/tmp/uploads", file.name)
|
| 58 |
+
with open(file_path, "wb") as f:
|
| 59 |
+
f.write(file.read())
|
| 60 |
+
print(f"β
PDF saved at {file_path} in {time.time() - start_time:.2f}s")
|
| 61 |
+
|
| 62 |
+
# β
Load PDF
|
| 63 |
+
start_time = time.time()
|
| 64 |
+
loader = PyPDFLoader(file_path)
|
| 65 |
+
documents = loader.load()
|
| 66 |
+
print(f"β
PDF loaded in {time.time() - start_time:.2f}s")
|
| 67 |
+
|
| 68 |
+
# β
Split text
|
| 69 |
+
start_time = time.time()
|
| 70 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=50)
|
| 71 |
+
texts = text_splitter.split_documents(documents)
|
| 72 |
+
print(f"β
Text split in {time.time() - start_time:.2f}s")
|
| 73 |
+
|
| 74 |
+
# β
Create ChromaDB
|
| 75 |
+
start_time = time.time()
|
| 76 |
+
db = Chroma.from_documents(texts, embedding=embeddings, persist_directory="/tmp/chroma_db")
|
| 77 |
+
print(f"β
ChromaDB created in {time.time() - start_time:.2f}s")
|
| 78 |
+
|
| 79 |
+
# β
Create retrieval chain
|
| 80 |
+
conversation_retrieval_chain = ConversationalRetrievalChain.from_llm(
|
| 81 |
+
llm=llm_pipeline, retriever=db.as_retriever()
|
| 82 |
+
)
|
| 83 |
+
print("β
Document processing complete!")
|
| 84 |
+
|
| 85 |
+
return "π PDF uploaded and processed successfully! You can now ask questions."
|
| 86 |
+
|
| 87 |
+
except Exception as e:
|
| 88 |
+
print(f"β Error processing PDF: {str(e)}")
|
| 89 |
+
return f"Error: {str(e)}"
|
| 90 |
|
|
|
|
| 91 |
|
| 92 |
|
| 93 |
def process_prompt(prompt, chat_history_display):
|