Spaces:
Running
Running
File size: 7,378 Bytes
fb07ec5 b14b5f0 fb07ec5 b14b5f0 fb07ec5 b14b5f0 fb07ec5 b14b5f0 fb07ec5 b14b5f0 fb07ec5 b14b5f0 fb07ec5 b14b5f0 fb07ec5 b14b5f0 fb07ec5 b14b5f0 fb07ec5 b14b5f0 fb07ec5 b14b5f0 fb07ec5 b14b5f0 fb07ec5 b14b5f0 fb07ec5 b14b5f0 fb07ec5 b14b5f0 fb07ec5 b14b5f0 fb07ec5 b14b5f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import os
from dotenv import load_dotenv
load_dotenv()
import requests
from bs4 import BeautifulSoup
from newsapi import NewsApiClient
import pandas as pd
import torch
import soundfile as sf
import gradio as gr
from transformers import (
AutoModelForSequenceClassification, AutoTokenizer, pipeline,
BartTokenizer, BartForConditionalGeneration,
MarianMTModel, MarianTokenizer,
BarkModel, AutoProcessor
)
# -------------------------
# Global Setup and Environment Variables
# -------------------------
NEWS_API_KEY = os.getenv("NEWS_API_KEY") # Set this in your .env file
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# -------------------------
# News Extraction Functions
# -------------------------
def fetch_and_scrape_news(company, api_key, count=11, output_file='news_articles.xlsx'):
newsapi = NewsApiClient(api_key=api_key)
all_articles = newsapi.get_everything(q=company, language='en', sort_by='relevancy', page_size=count)
articles = all_articles.get('articles', [])
scraped_data = []
for article in articles:
url = article.get('url')
if url:
scraped_article = scrape_news(url)
if scraped_article:
scraped_article['url'] = url
scraped_data.append(scraped_article)
df = pd.DataFrame(scraped_data)
df.to_excel(output_file, index=False, header=True)
print(f"News scraping complete. Data saved to {output_file}")
return df
def scrape_news(url):
headers = {"User-Agent": "Mozilla/5.0"}
response = requests.get(url, headers=headers)
if response.status_code != 200:
print(f"Failed to fetch the page: {url}")
return None
soup = BeautifulSoup(response.text, "html.parser")
headline = soup.find("h1").get_text(strip=True) if soup.find("h1") else "No headline found"
paragraphs = soup.find_all("p")
article_text = " ".join(p.get_text(strip=True) for p in paragraphs)
return {"headline": headline, "content": article_text}
# -------------------------
# Sentiment Analysis Setup
# -------------------------
sentiment_model_name = "cross-encoder/nli-distilroberta-base"
sentiment_model = AutoModelForSequenceClassification.from_pretrained(
sentiment_model_name,
torch_dtype=torch.float16,
device_map="auto"
)
sentiment_tokenizer = AutoTokenizer.from_pretrained(sentiment_model_name)
classifier = pipeline("zero-shot-classification", model=sentiment_model, tokenizer=sentiment_tokenizer)
labels = ["positive", "negative", "neutral"]
# -------------------------
# Summarization Setup
# -------------------------
bart_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
bart_model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
def split_into_chunks(text, tokenizer, max_tokens=1024):
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
tokenized_word = tokenizer.encode(word, add_special_tokens=False)
if current_length + len(tokenized_word) <= max_tokens:
current_chunk.append(word)
current_length += len(tokenized_word)
else:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = len(tokenized_word)
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
# -------------------------
# Translation Setup (English to Hindi)
# -------------------------
translation_model_name = 'Helsinki-NLP/opus-mt-en-hi'
trans_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
trans_model = MarianMTModel.from_pretrained(translation_model_name)
def translate_text(text):
tokens = trans_tokenizer(text, return_tensors="pt", padding=True)
translated = trans_model.generate(**tokens)
return trans_tokenizer.decode(translated[0], skip_special_tokens=True)
# -------------------------
# Bark TTS Setup (Hindi)
# -------------------------
bark_model = BarkModel.from_pretrained("suno/bark-small").to(device)
processor = AutoProcessor.from_pretrained("suno/bark")
# -------------------------
# Main Pipeline Function
# -------------------------
def process_company(company):
# Step 1: Fetch and scrape news
fetch_and_scrape_news(company, NEWS_API_KEY)
df = pd.read_excel('news_articles.xlsx')
print("Scraped Articles:")
print(df)
articles_data = []
for index, row in df.iterrows():
article_text = row.get("content", "")
title = row.get("headline", "No title")
url = row.get("url", "")
chunks = split_into_chunks(article_text, bart_tokenizer)
chunk_summaries = []
for chunk in chunks:
inputs = bart_tokenizer([chunk], max_length=1024, return_tensors='pt', truncation=True)
summary_ids = bart_model.generate(inputs.input_ids, num_beams=4, max_length=130, min_length=30, early_stopping=True)
chunk_summary = bart_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
chunk_summaries.append(chunk_summary)
final_summary = ' '.join(chunk_summaries)
sentiment_result = classifier(final_summary, labels)
sentiment = sentiment_result["labels"][0]
articles_data.append({
"Title": title,
"Summary": final_summary,
"Sentiment": sentiment,
"URL": url
})
# Comparative Analysis: Build a simple sentiment distribution
sentiment_distribution = {"Positive": 0, "Negative": 0, "Neutral": 0}
for article in articles_data:
key = article["Sentiment"].capitalize()
sentiment_distribution[key] += 1
# Step 2: Translate summaries and generate Hindi speech
translated_summaries = [translate_text(article["Summary"]) for article in articles_data]
final_translated_text = "\n\n".join(translated_summaries)
inputs = processor(final_translated_text, return_tensors="pt").to(device)
speech_output = bark_model.generate(**inputs)
audio_path = "final_summary.wav"
sf.write(audio_path, speech_output[0].cpu().numpy(), bark_model.generation_config.sample_rate)
# Build final report
report = {
"Company": company,
"Articles": articles_data,
"Comparative Sentiment Score": {
"Sentiment Distribution": sentiment_distribution,
"Coverage Differences": "Detailed comparative analysis not implemented",
"Topic Overlap": "Topic extraction not implemented"
},
"Final Sentiment Analysis": "Overall sentiment analysis not fully computed",
"Audio": audio_path
}
return report, audio_path
# Gradio Interface Function
def gradio_interface(company):
report, audio_path = process_company(company)
return report, audio_path
# -------------------------
# Gradio UI Setup
# -------------------------
iface = gr.Interface(
fn=gradio_interface,
inputs=gr.Textbox(label="Enter Company Name"),
outputs=[
gr.JSON(label="News Sentiment Report"),
gr.Audio(type="filepath", label="Hindi Summary Audio")
],
title="News Summarization & Text-to-Speech",
description="Enter a company name to fetch news articles, perform sentiment analysis, and listen to a Hindi TTS summary."
)
if __name__ == "__main__":
iface.launch()
|