DeepLearning101 commited on
Commit
7730969
·
verified ·
1 Parent(s): 7c93257

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -11
app.py CHANGED
@@ -10,30 +10,45 @@ from scipy.io import wavfile
10
  import scipy.signal as sps
11
  from denoiser.demucs import Demucs
12
  from pydub import AudioSegment
13
-
14
- modelpath = './denoiser/master64.th'
 
 
 
 
 
 
 
15
 
16
  def transcribe(file_upload, microphone):
17
  file = microphone if microphone is not None else file_upload
18
- model = Demucs(hidden=64)
19
  state_dict = torch.load(modelpath, map_location='cpu')
20
- model.load_state_dict(state_dict)
21
- demucs = model
22
  x, sr = torchaudio.load(file)
23
- out = demucs(x[None])[0]
24
  out = out / max(out.abs().max().item(), 1)
25
  torchaudio.save('enhanced.wav', out, sr)
26
  enhanced = AudioSegment.from_wav('enhanced.wav') #只有去完噪的需要降bitrate再做語音識別
27
  enhanced.export('enhanced.wav', format="wav", bitrate="256k")
28
- return "enhanced.wav"
 
 
 
 
 
 
29
 
30
  demo = gr.Interface(
31
  fn=transcribe,
32
  inputs=[
33
- gr.Audio(source="microphone", type="filepath", optional=True, label="語音質檢麥克風實時錄音"),
34
- gr.Audio(source="upload", type="filepath", optional=True, label="語音質檢原始音檔"),
 
 
 
 
35
  ],
36
- outputs=gr.Audio(type="filepath", label="Output"),
37
  title="<p style='text-align: center'><a href='https://www.twman.org/AI' target='_blank'>語音質檢噪音去除 (語音增強):Meta Denoiser</a>",
38
  description=(
39
  "為了提升語音識別的效果,可以在識別前先進行噪音去除"
@@ -47,4 +62,4 @@ demo = gr.Interface(
47
  ],
48
  )
49
 
50
- demo.launch(enable_queue=True)
 
10
  import scipy.signal as sps
11
  from denoiser.demucs import Demucs
12
  from pydub import AudioSegment
13
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
14
+
15
+ # 設定 Hugging Face Hub 的 Access Token
16
+ auth_token = os.getenv("HF_HOME")
17
+
18
+ # 加載私有模型
19
+ model_id = "DeepLearning101/Speech-Quality-Inspection_Meta-Denoiser"
20
+ model = AutoModelForSequenceClassification.from_pretrained(model_id, use_auth_token=os.environ["HF_TOKEN"])
21
+ tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=os.environ["HF_TOKEN"])
22
 
23
  def transcribe(file_upload, microphone):
24
  file = microphone if microphone is not None else file_upload
25
+ demucs_model = Demucs(hidden=64)
26
  state_dict = torch.load(modelpath, map_location='cpu')
27
+ demucs_model.load_state_dict(state_dict)
 
28
  x, sr = torchaudio.load(file)
29
+ out = demucs_model(x[None])[0]
30
  out = out / max(out.abs().max().item(), 1)
31
  torchaudio.save('enhanced.wav', out, sr)
32
  enhanced = AudioSegment.from_wav('enhanced.wav') #只有去完噪的需要降bitrate再做語音識別
33
  enhanced.export('enhanced.wav', format="wav", bitrate="256k")
34
+
35
+ # 假設模型是用於文本分類
36
+ inputs = tokenizer(enhanced, return_tensors="pt")
37
+ outputs = model(**inputs)
38
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
39
+
40
+ return "enhanced.wav", predictions
41
 
42
  demo = gr.Interface(
43
  fn=transcribe,
44
  inputs=[
45
+ gr.Audio(type="filepath", label="語音質檢麥克風實時錄音"),
46
+ gr.Audio(type="filepath", label="語音質檢原始音檔"),
47
+ ],
48
+ outputs=[
49
+ gr.Audio(type="filepath", label="Output"),
50
+ gr.Textbox(label="Model Predictions")
51
  ],
 
52
  title="<p style='text-align: center'><a href='https://www.twman.org/AI' target='_blank'>語音質檢噪音去除 (語音增強):Meta Denoiser</a>",
53
  description=(
54
  "為了提升語音識別的效果,可以在識別前先進行噪音去除"
 
62
  ],
63
  )
64
 
65
+ demo.launch(debug=True)