DeepLearning101 commited on
Commit
63cc258
·
verified ·
1 Parent(s): 5fe70fc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -18
app.py CHANGED
@@ -1,38 +1,35 @@
1
  import os
2
  import time
3
  import json
4
- import random
5
  import gradio as gr
6
  import torch
7
  import torchaudio
8
  import numpy as np
9
- from scipy.io import wavfile
10
- import scipy.signal as sps
11
  from denoiser.demucs import Demucs
12
  from pydub import AudioSegment
13
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
14
 
15
- # 設定 Hugging Face Hub 的 Access Token
16
- auth_token = os.getenv("HF_HOME")
17
 
18
- # 加載私有模型
19
  model_id = "DeepLearning101/Speech-Quality-Inspection_Meta-Denoiser"
20
- model = AutoModelForSequenceClassification.from_pretrained(model_id, token=auth_token)
21
- tokenizer = AutoTokenizer.from_pretrained(model_id, token=auth_token)
22
 
23
  def transcribe(file_upload, microphone):
24
  file = microphone if microphone is not None else file_upload
25
  demucs_model = Demucs(hidden=64)
26
- state_dict = torch.load(modelpath, map_location='cpu')
27
  demucs_model.load_state_dict(state_dict)
28
  x, sr = torchaudio.load(file)
29
  out = demucs_model(x[None])[0]
30
  out = out / max(out.abs().max().item(), 1)
31
  torchaudio.save('enhanced.wav', out, sr)
32
- enhanced = AudioSegment.from_wav('enhanced.wav') #只有去完噪的需要降bitrate再做語音識別
33
  enhanced.export('enhanced.wav', format="wav", bitrate="256k")
34
 
35
- # 假設模型是用於文本分類
36
  inputs = tokenizer(enhanced, return_tensors="pt")
37
  outputs = model(**inputs)
38
  predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
@@ -42,17 +39,15 @@ def transcribe(file_upload, microphone):
42
  demo = gr.Interface(
43
  fn=transcribe,
44
  inputs=[
45
- gr.Audio(type="filepath", label="語音質檢麥克風實時錄音"),
46
- gr.Audio(type="filepath", label="語音質檢原始音檔"),
47
  ],
48
  outputs=[
49
  gr.Audio(type="filepath", label="Output"),
50
  gr.Textbox(label="Model Predictions")
51
  ],
52
- title="<p style='text-align: center'><a href='https://www.twman.org/AI' target='_blank'>語音質檢噪音去除 (語音增強):Meta Denoiser</a>",
53
- description=(
54
- "為了提升語音識別的效果,可以在識別前先進行噪音去除"
55
- ),
56
  allow_flagging="never",
57
  examples=[
58
  ["exampleAudio/15s_2020-03-27_sep1.wav"],
@@ -62,4 +57,4 @@ demo = gr.Interface(
62
  ],
63
  )
64
 
65
- demo.launch(debug=True)
 
1
  import os
2
  import time
3
  import json
 
4
  import gradio as gr
5
  import torch
6
  import torchaudio
7
  import numpy as np
 
 
8
  from denoiser.demucs import Demucs
9
  from pydub import AudioSegment
10
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
11
 
12
+ # 设置 Hugging Face Hub 的 Access Token
13
+ auth_token = os.getenv("HF_TOKEN")
14
 
15
+ # 加载私有模型
16
  model_id = "DeepLearning101/Speech-Quality-Inspection_Meta-Denoiser"
17
+ model = AutoModelForSequenceClassification.from_pretrained(model_id, use_auth_token=auth_token)
18
+ tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=auth_token)
19
 
20
  def transcribe(file_upload, microphone):
21
  file = microphone if microphone is not None else file_upload
22
  demucs_model = Demucs(hidden=64)
23
+ state_dict = torch.load("path_to_model_checkpoint", map_location='cpu') # 请确保提供正确的模型文件路径
24
  demucs_model.load_state_dict(state_dict)
25
  x, sr = torchaudio.load(file)
26
  out = demucs_model(x[None])[0]
27
  out = out / max(out.abs().max().item(), 1)
28
  torchaudio.save('enhanced.wav', out, sr)
29
+ enhanced = AudioSegment.from_wav('enhanced.wav') # 只有去完噪的需要降bitrate再做语音识别
30
  enhanced.export('enhanced.wav', format="wav", bitrate="256k")
31
 
32
+ # 假设模型是用于文本分类
33
  inputs = tokenizer(enhanced, return_tensors="pt")
34
  outputs = model(**inputs)
35
  predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
 
39
  demo = gr.Interface(
40
  fn=transcribe,
41
  inputs=[
42
+ gr.Audio(type="filepath", label="语音质检麦克风实时录音"),
43
+ gr.Audio(type="filepath", label="语音质检原始音档"),
44
  ],
45
  outputs=[
46
  gr.Audio(type="filepath", label="Output"),
47
  gr.Textbox(label="Model Predictions")
48
  ],
49
+ title="<p style='text-align: center'><a href='https://www.twman.org/AI' target='_blank'>语音质检噪音去除 (语音增强):Meta Denoiser</a>",
50
+ description="为了提升语音识别的效果,可以在识别前先进行噪音去除",
 
 
51
  allow_flagging="never",
52
  examples=[
53
  ["exampleAudio/15s_2020-03-27_sep1.wav"],
 
57
  ],
58
  )
59
 
60
+ demo.launch(debug=True)