Spaces:
Sleeping
Sleeping
Commit
·
f4b6e70
1
Parent(s):
6c0ee22
Upload 2 files
Browse files
models/sequence_labeling/head_token_cls.py
ADDED
@@ -0,0 +1,431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from transformers.models.bert.modeling_bert import BertPreTrainedModel, BertModel
|
5 |
+
from transformers.models.roberta.modeling_roberta import RobertaPreTrainedModel, RobertaModel
|
6 |
+
from transformers.models.albert.modeling_albert import AlbertPreTrainedModel, AlbertModel
|
7 |
+
from transformers.models.megatron_bert.modeling_megatron_bert import MegatronBertPreTrainedModel, MegatronBertModel
|
8 |
+
from transformers.modeling_outputs import TokenClassifierOutput
|
9 |
+
from torch.nn import CrossEntropyLoss
|
10 |
+
from loss.focal_loss import FocalLoss
|
11 |
+
from loss.label_smoothing import LabelSmoothingCrossEntropy
|
12 |
+
from models.basic_modules.crf import CRF
|
13 |
+
from tools.model_utils.parameter_freeze import ParameterFreeze
|
14 |
+
|
15 |
+
from tools.runner_utils.log_util import logging
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
freezer = ParameterFreeze()
|
19 |
+
|
20 |
+
|
21 |
+
"""
|
22 |
+
BERT for token-level classification with softmax head.
|
23 |
+
"""
|
24 |
+
class BertSoftmaxForSequenceLabeling(BertPreTrainedModel):
|
25 |
+
def __init__(self, config):
|
26 |
+
super(BertSoftmaxForSequenceLabeling, self).__init__(config)
|
27 |
+
self.num_labels = config.num_labels
|
28 |
+
self.bert = BertModel(config)
|
29 |
+
if self.config.use_freezing:
|
30 |
+
self.bert = freezer.freeze_lm(self.bert)
|
31 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
32 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
33 |
+
self.loss_type = config.loss_type
|
34 |
+
self.init_weights()
|
35 |
+
|
36 |
+
def forward(
|
37 |
+
self,
|
38 |
+
input_ids,
|
39 |
+
attention_mask=None,
|
40 |
+
token_type_ids=None,
|
41 |
+
position_ids=None,
|
42 |
+
head_mask=None,
|
43 |
+
labels=None,
|
44 |
+
return_dict=False,
|
45 |
+
):
|
46 |
+
outputs = self.bert(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids)
|
47 |
+
sequence_output = outputs[0]
|
48 |
+
sequence_output = self.dropout(sequence_output)
|
49 |
+
logits = self.classifier(sequence_output)
|
50 |
+
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
|
51 |
+
if labels is not None:
|
52 |
+
assert self.loss_type in ["lsr", "focal", "ce"]
|
53 |
+
if self.loss_type == "lsr":
|
54 |
+
loss_fct = LabelSmoothingCrossEntropy(ignore_index=0)
|
55 |
+
elif self.loss_type == "focal":
|
56 |
+
loss_fct = FocalLoss(ignore_index=0)
|
57 |
+
else:
|
58 |
+
loss_fct = CrossEntropyLoss(ignore_index=0)
|
59 |
+
# Only keep active parts of the loss
|
60 |
+
if attention_mask is not None:
|
61 |
+
active_loss = attention_mask.view(-1) == 1
|
62 |
+
active_logits = logits.view(-1, self.num_labels)[active_loss]
|
63 |
+
active_labels = labels.view(-1)[active_loss]
|
64 |
+
loss = loss_fct(active_logits, active_labels)
|
65 |
+
else:
|
66 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
67 |
+
|
68 |
+
if not return_dict:
|
69 |
+
outputs = (loss,) + outputs
|
70 |
+
return outputs # (loss), scores, (hidden_states), (attentions)
|
71 |
+
|
72 |
+
return TokenClassifierOutput(
|
73 |
+
loss=loss,
|
74 |
+
logits=logits,
|
75 |
+
hidden_states=outputs.hidden_states,
|
76 |
+
attentions=outputs.attentions,
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
"""
|
81 |
+
RoBERTa for token-level classification with softmax head.
|
82 |
+
"""
|
83 |
+
class RobertaSoftmaxForSequenceLabeling(RobertaPreTrainedModel):
|
84 |
+
def __init__(self, config):
|
85 |
+
super(RobertaSoftmaxForSequenceLabeling, self).__init__(config)
|
86 |
+
self.num_labels = config.num_labels
|
87 |
+
self.roberta = RobertaModel(config)
|
88 |
+
if self.config.use_freezing:
|
89 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
90 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
91 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
92 |
+
self.loss_type = config.loss_type
|
93 |
+
self.init_weights()
|
94 |
+
|
95 |
+
def forward(
|
96 |
+
self,
|
97 |
+
input_ids,
|
98 |
+
attention_mask=None,
|
99 |
+
token_type_ids=None,
|
100 |
+
position_ids=None,
|
101 |
+
head_mask=None,
|
102 |
+
labels=None,
|
103 |
+
return_dict=False,
|
104 |
+
):
|
105 |
+
outputs = self.roberta(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids)
|
106 |
+
sequence_output = outputs[0]
|
107 |
+
sequence_output = self.dropout(sequence_output)
|
108 |
+
logits = self.classifier(sequence_output)
|
109 |
+
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
|
110 |
+
if labels is not None:
|
111 |
+
assert self.loss_type in ["lsr", "focal", "ce"]
|
112 |
+
if self.loss_type == "lsr":
|
113 |
+
loss_fct = LabelSmoothingCrossEntropy(ignore_index=0)
|
114 |
+
elif self.loss_type == "focal":
|
115 |
+
loss_fct = FocalLoss(ignore_index=0)
|
116 |
+
else:
|
117 |
+
loss_fct = CrossEntropyLoss(ignore_index=0)
|
118 |
+
# Only keep active parts of the loss
|
119 |
+
if attention_mask is not None:
|
120 |
+
active_loss = attention_mask.view(-1) == 1
|
121 |
+
active_logits = logits.view(-1, self.num_labels)[active_loss]
|
122 |
+
active_labels = labels.view(-1)[active_loss]
|
123 |
+
loss = loss_fct(active_logits, active_labels)
|
124 |
+
else:
|
125 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
126 |
+
|
127 |
+
if not return_dict:
|
128 |
+
outputs = (loss,) + outputs
|
129 |
+
return outputs # (loss), scores, (hidden_states), (attentions)
|
130 |
+
|
131 |
+
return TokenClassifierOutput(
|
132 |
+
loss=loss,
|
133 |
+
logits=logits,
|
134 |
+
hidden_states=outputs.hidden_states,
|
135 |
+
attentions=outputs.attentions,
|
136 |
+
)
|
137 |
+
|
138 |
+
|
139 |
+
"""
|
140 |
+
ALBERT for token-level classification with softmax head.
|
141 |
+
"""
|
142 |
+
class AlbertSoftmaxForSequenceLabeling(AlbertPreTrainedModel):
|
143 |
+
def __init__(self, config):
|
144 |
+
super(AlbertSoftmaxForSequenceLabeling, self).__init__(config)
|
145 |
+
self.num_labels = config.num_labels
|
146 |
+
self.loss_type = config.loss_type
|
147 |
+
self.bert = AlbertModel(config)
|
148 |
+
if self.config.use_freezing:
|
149 |
+
self.bert = freezer.freeze_lm(self.bert)
|
150 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
151 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
152 |
+
self.init_weights()
|
153 |
+
|
154 |
+
def forward(
|
155 |
+
self,
|
156 |
+
input_ids,
|
157 |
+
attention_mask=None,
|
158 |
+
token_type_ids=None,
|
159 |
+
position_ids=None,
|
160 |
+
head_mask=None,
|
161 |
+
labels=None,
|
162 |
+
return_dict=False,
|
163 |
+
):
|
164 |
+
outputs = self.bert(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids,
|
165 |
+
position_ids=position_ids,head_mask=head_mask)
|
166 |
+
sequence_output = outputs[0]
|
167 |
+
sequence_output = self.dropout(sequence_output)
|
168 |
+
logits = self.classifier(sequence_output)
|
169 |
+
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
|
170 |
+
if labels is not None:
|
171 |
+
assert self.loss_type in ["lsr", "focal", "ce"]
|
172 |
+
if self.loss_type =="lsr":
|
173 |
+
loss_fct = LabelSmoothingCrossEntropy(ignore_index=0)
|
174 |
+
elif self.loss_type == "focal":
|
175 |
+
loss_fct = FocalLoss(ignore_index=0)
|
176 |
+
else:
|
177 |
+
loss_fct = CrossEntropyLoss(ignore_index=0)
|
178 |
+
# Only keep active parts of the loss
|
179 |
+
if attention_mask is not None:
|
180 |
+
active_loss = attention_mask.view(-1) == 1
|
181 |
+
active_logits = logits.view(-1, self.num_labels)[active_loss]
|
182 |
+
active_labels = labels.view(-1)[active_loss]
|
183 |
+
loss = loss_fct(active_logits, active_labels)
|
184 |
+
else:
|
185 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
186 |
+
|
187 |
+
if not return_dict:
|
188 |
+
outputs = (loss,) + outputs
|
189 |
+
return outputs # (loss), scores, (hidden_states), (attentions)
|
190 |
+
|
191 |
+
return TokenClassifierOutput(
|
192 |
+
loss=loss,
|
193 |
+
logits=logits,
|
194 |
+
hidden_states=outputs.hidden_states,
|
195 |
+
attentions=outputs.attentions,
|
196 |
+
)
|
197 |
+
|
198 |
+
|
199 |
+
"""
|
200 |
+
MegatronBERT for token-level classification with softmax head.
|
201 |
+
"""
|
202 |
+
class MegatronBertSoftmaxForSequenceLabeling(MegatronBertPreTrainedModel):
|
203 |
+
def __init__(self, config):
|
204 |
+
super(MegatronBertSoftmaxForSequenceLabeling, self).__init__(config)
|
205 |
+
self.num_labels = config.num_labels
|
206 |
+
self.bert = MegatronBertModel(config)
|
207 |
+
if self.config.use_freezing:
|
208 |
+
self.bert = freezer.freeze_lm(self.bert)
|
209 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
210 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
211 |
+
self.loss_type = config.loss_type
|
212 |
+
self.init_weights()
|
213 |
+
|
214 |
+
def forward(
|
215 |
+
self,
|
216 |
+
input_ids,
|
217 |
+
attention_mask=None,
|
218 |
+
token_type_ids=None,
|
219 |
+
position_ids=None,
|
220 |
+
head_mask=None,
|
221 |
+
labels=None,
|
222 |
+
return_dict=False,
|
223 |
+
):
|
224 |
+
outputs = self.bert(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids)
|
225 |
+
sequence_output = outputs[0]
|
226 |
+
sequence_output = self.dropout(sequence_output)
|
227 |
+
logits = self.classifier(sequence_output)
|
228 |
+
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
|
229 |
+
if labels is not None:
|
230 |
+
assert self.loss_type in ["lsr", "focal", "ce"]
|
231 |
+
if self.loss_type == "lsr":
|
232 |
+
loss_fct = LabelSmoothingCrossEntropy(ignore_index=0)
|
233 |
+
elif self.loss_type == "focal":
|
234 |
+
loss_fct = FocalLoss(ignore_index=0)
|
235 |
+
else:
|
236 |
+
loss_fct = CrossEntropyLoss(ignore_index=0)
|
237 |
+
# Only keep active parts of the loss
|
238 |
+
if attention_mask is not None:
|
239 |
+
active_loss = attention_mask.view(-1) == 1
|
240 |
+
active_logits = logits.view(-1, self.num_labels)[active_loss]
|
241 |
+
active_labels = labels.view(-1)[active_loss]
|
242 |
+
loss = loss_fct(active_logits, active_labels)
|
243 |
+
else:
|
244 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
245 |
+
|
246 |
+
if not return_dict:
|
247 |
+
outputs = (loss,) + outputs
|
248 |
+
return outputs # (loss), scores, (hidden_states), (attentions)
|
249 |
+
|
250 |
+
return TokenClassifierOutput(
|
251 |
+
loss=loss,
|
252 |
+
logits=logits,
|
253 |
+
hidden_states=outputs.hidden_states,
|
254 |
+
attentions=outputs.attentions,
|
255 |
+
)
|
256 |
+
|
257 |
+
|
258 |
+
"""
|
259 |
+
BERT for token-level classification with CRF head.
|
260 |
+
"""
|
261 |
+
class BertCrfForSequenceLabeling(BertPreTrainedModel):
|
262 |
+
def __init__(self, config):
|
263 |
+
super(BertCrfForSequenceLabeling, self).__init__(config)
|
264 |
+
self.bert = BertModel(config)
|
265 |
+
if self.config.use_freezing:
|
266 |
+
self.bert = freezer.freeze_lm(self.bert)
|
267 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
268 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
269 |
+
self.crf = CRF(num_tags=config.num_labels, batch_first=True)
|
270 |
+
self.init_weights()
|
271 |
+
|
272 |
+
def forward(
|
273 |
+
self,
|
274 |
+
input_ids,
|
275 |
+
attention_mask=None,
|
276 |
+
token_type_ids=None,
|
277 |
+
position_ids=None,
|
278 |
+
head_mask=None,
|
279 |
+
labels=None,
|
280 |
+
return_dict=False,
|
281 |
+
):
|
282 |
+
outputs =self.bert(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids)
|
283 |
+
sequence_output = outputs[0]
|
284 |
+
sequence_output = self.dropout(sequence_output)
|
285 |
+
logits = self.classifier(sequence_output)
|
286 |
+
outputs = (logits,)
|
287 |
+
if labels is not None:
|
288 |
+
loss = self.crf(emissions = logits, tags=labels, mask=attention_mask)
|
289 |
+
outputs =(-1*loss,)+outputs
|
290 |
+
|
291 |
+
if not return_dict:
|
292 |
+
return outputs # (loss), scores, (hidden_states), (attentions)
|
293 |
+
|
294 |
+
return TokenClassifierOutput(
|
295 |
+
loss=loss,
|
296 |
+
logits=logits,
|
297 |
+
hidden_states=outputs.hidden_states,
|
298 |
+
attentions=outputs.attentions,
|
299 |
+
)
|
300 |
+
|
301 |
+
|
302 |
+
"""
|
303 |
+
RoBERTa for token-level classification with CRF head.
|
304 |
+
"""
|
305 |
+
class RobertaCrfForSequenceLabeling(RobertaPreTrainedModel):
|
306 |
+
def __init__(self, config):
|
307 |
+
super(RobertaCrfForSequenceLabeling, self).__init__(config)
|
308 |
+
self.roberta = RobertaModel(config)
|
309 |
+
if self.config.use_freezing:
|
310 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
311 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
312 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
313 |
+
self.crf = CRF(num_tags=config.num_labels, batch_first=True)
|
314 |
+
self.init_weights()
|
315 |
+
|
316 |
+
def forward(
|
317 |
+
self,
|
318 |
+
input_ids,
|
319 |
+
attention_mask=None,
|
320 |
+
token_type_ids=None,
|
321 |
+
position_ids=None,
|
322 |
+
head_mask=None,
|
323 |
+
labels=None,
|
324 |
+
return_dict=False,
|
325 |
+
):
|
326 |
+
outputs =self.roberta(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids)
|
327 |
+
sequence_output = outputs[0]
|
328 |
+
sequence_output = self.dropout(sequence_output)
|
329 |
+
logits = self.classifier(sequence_output)
|
330 |
+
outputs = (logits,)
|
331 |
+
if labels is not None:
|
332 |
+
loss = self.crf(emissions = logits, tags=labels, mask=attention_mask)
|
333 |
+
outputs =(-1*loss,)+outputs
|
334 |
+
|
335 |
+
if not return_dict:
|
336 |
+
return outputs # (loss), scores, (hidden_states), (attentions)
|
337 |
+
|
338 |
+
return TokenClassifierOutput(
|
339 |
+
loss=loss,
|
340 |
+
logits=logits,
|
341 |
+
hidden_states=outputs.hidden_states,
|
342 |
+
attentions=outputs.attentions,
|
343 |
+
)
|
344 |
+
|
345 |
+
|
346 |
+
"""
|
347 |
+
ALBERT for token-level classification with CRF head.
|
348 |
+
"""
|
349 |
+
class AlbertCrfForSequenceLabeling(AlbertPreTrainedModel):
|
350 |
+
def __init__(self, config):
|
351 |
+
super(AlbertCrfForSequenceLabeling, self).__init__(config)
|
352 |
+
self.bert = AlbertModel(config)
|
353 |
+
if self.config.use_freezing:
|
354 |
+
self.bert = freezer.freeze_lm(self.bert)
|
355 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
356 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
357 |
+
self.crf = CRF(num_tags=config.num_labels, batch_first=True)
|
358 |
+
self.init_weights()
|
359 |
+
|
360 |
+
def forward(
|
361 |
+
self,
|
362 |
+
input_ids,
|
363 |
+
attention_mask=None,
|
364 |
+
token_type_ids=None,
|
365 |
+
position_ids=None,
|
366 |
+
head_mask=None,
|
367 |
+
labels=None,
|
368 |
+
return_dict=False,
|
369 |
+
):
|
370 |
+
outputs = self.bert(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids)
|
371 |
+
sequence_output = outputs[0]
|
372 |
+
sequence_output = self.dropout(sequence_output)
|
373 |
+
logits = self.classifier(sequence_output)
|
374 |
+
outputs = (logits,)
|
375 |
+
if labels is not None:
|
376 |
+
loss = self.crf(emissions = logits, tags=labels, mask=attention_mask)
|
377 |
+
outputs =(-1*loss,)+outputs
|
378 |
+
|
379 |
+
if not return_dict:
|
380 |
+
return outputs # (loss), scores, (hidden_states), (attentions)
|
381 |
+
|
382 |
+
return TokenClassifierOutput(
|
383 |
+
loss=loss,
|
384 |
+
logits=logits,
|
385 |
+
hidden_states=outputs.hidden_states,
|
386 |
+
attentions=outputs.attentions,
|
387 |
+
)
|
388 |
+
|
389 |
+
|
390 |
+
"""
|
391 |
+
MegatronBERT for token-level classification with CRF head.
|
392 |
+
"""
|
393 |
+
class MegatronBertCrfForSequenceLabeling(MegatronBertPreTrainedModel):
|
394 |
+
def __init__(self, config):
|
395 |
+
super(MegatronBertCrfForSequenceLabeling, self).__init__(config)
|
396 |
+
self.bert = MegatronBertModel(config)
|
397 |
+
if self.config.use_freezing:
|
398 |
+
self.bert = freezer.freeze_lm(self.bert)
|
399 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
400 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
401 |
+
self.crf = CRF(num_tags=config.num_labels, batch_first=True)
|
402 |
+
self.init_weights()
|
403 |
+
|
404 |
+
def forward(
|
405 |
+
self,
|
406 |
+
input_ids,
|
407 |
+
attention_mask=None,
|
408 |
+
token_type_ids=None,
|
409 |
+
position_ids=None,
|
410 |
+
head_mask=None,
|
411 |
+
labels=None,
|
412 |
+
return_dict=False,
|
413 |
+
):
|
414 |
+
outputs =self.bert(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids)
|
415 |
+
sequence_output = outputs[0]
|
416 |
+
sequence_output = self.dropout(sequence_output)
|
417 |
+
logits = self.classifier(sequence_output)
|
418 |
+
outputs = (logits,)
|
419 |
+
if labels is not None:
|
420 |
+
loss = self.crf(emissions = logits, tags=labels, mask=attention_mask)
|
421 |
+
outputs =(-1*loss,)+outputs
|
422 |
+
|
423 |
+
if not return_dict:
|
424 |
+
return outputs # (loss), scores, (hidden_states), (attentions)
|
425 |
+
|
426 |
+
return TokenClassifierOutput(
|
427 |
+
loss=loss,
|
428 |
+
logits=logits,
|
429 |
+
hidden_states=outputs.hidden_states,
|
430 |
+
attentions=outputs.attentions,
|
431 |
+
)
|
models/sequence_labeling/lebert.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from transformers.configuration_bert import BertConfig
|
2 |
+
# from transformers import BertPreTrainedModel
|
3 |
+
# from transformers.modeling_bert import BertEmbeddings, BertEncoder, BertPooler, BertLayer, BaseModelOutput, BaseModelOutputWithPooling
|
4 |
+
# from transformers.modeling_bert import BERT_INPUTS_DOCSTRING, _TOKENIZER_FOR_DOC, _CONFIG_FOR_DOC
|
5 |
+
|
6 |
+
from transformers.models.bert.modeling_bert import BertConfig, BertPreTrainedModel, BertEmbeddings, \
|
7 |
+
BertPooler, BertLayer, BaseModelOutputWithPoolingAndCrossAttentions, BaseModelOutputWithPastAndCrossAttentions
|
8 |
+
from transformers.models.bert.modeling_bert import BERT_INPUTS_DOCSTRING, _TOKENIZER_FOR_DOC, _CONFIG_FOR_DOC
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import math
|
13 |
+
import os
|
14 |
+
import warnings
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Optional, Tuple
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
from torch import nn
|
21 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
22 |
+
|
23 |
+
from transformers.file_utils import (
|
24 |
+
add_code_sample_docstrings,
|
25 |
+
add_start_docstrings_to_model_forward,
|
26 |
+
)
|
27 |
+
|
28 |
+
class WordEmbeddingAdapter(nn.Module):
|
29 |
+
|
30 |
+
def __init__(self, config):
|
31 |
+
super(WordEmbeddingAdapter, self).__init__()
|
32 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
33 |
+
self.tanh = nn.Tanh()
|
34 |
+
|
35 |
+
self.linear1 = nn.Linear(config.word_embed_dim, config.hidden_size)
|
36 |
+
self.linear2 = nn.Linear(config.hidden_size, config.hidden_size)
|
37 |
+
|
38 |
+
attn_W = torch.zeros(config.hidden_size, config.hidden_size)
|
39 |
+
self.attn_W = nn.Parameter(attn_W)
|
40 |
+
self.attn_W.data.normal_(mean=0.0, std=config.initializer_range)
|
41 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
42 |
+
|
43 |
+
def forward(self, layer_output, word_embeddings, word_mask):
|
44 |
+
"""
|
45 |
+
:param layer_output:bert layer的输出,[b_size, len_input, d_model]
|
46 |
+
:param word_embeddings:每个汉字对应的词向量集合,[b_size, len_input, num_word, d_word]
|
47 |
+
:param word_mask:每个汉字对应的词向量集合的attention mask, [b_size, len_input, num_word]
|
48 |
+
"""
|
49 |
+
|
50 |
+
# transform
|
51 |
+
# 将词向量,与字符向量进行维度对齐
|
52 |
+
word_outputs = self.linear1(word_embeddings)
|
53 |
+
word_outputs = self.tanh(word_outputs)
|
54 |
+
word_outputs = self.linear2(word_outputs)
|
55 |
+
word_outputs = self.dropout(word_outputs) # word_outputs:[b_size, len_input, num_word, d_model]
|
56 |
+
# if type(word_mask) == torch.long:
|
57 |
+
word_mask = word_mask.bool()
|
58 |
+
|
59 |
+
# 计算每个字符向量,与其对应的所有词向量的注意力权重,然后加权求和。采用双线性映射计算注意力权重
|
60 |
+
# layer_output = layer_output.unsqueeze(2) # layer_output:[b_size, len_input, 1, d_model]
|
61 |
+
socres = torch.matmul(layer_output.unsqueeze(2), self.attn_W) # [b_size, len_input, 1, d_model]
|
62 |
+
socres = torch.matmul(socres, torch.transpose(word_outputs, 2, 3)) # [b_size, len_input, 1, num_word]
|
63 |
+
socres = socres.squeeze(2) # [b_size, len_input, num_word]
|
64 |
+
socres.masked_fill_(word_mask, -1e9) # 将pad的注意力设为很小的数
|
65 |
+
socres = F.softmax(socres, dim=-1) # [b_size, len_input, num_word]
|
66 |
+
attn = socres.unsqueeze(-1) # [b_size, len_input, num_word, 1]
|
67 |
+
|
68 |
+
weighted_word_embedding = torch.sum(word_outputs * attn, dim=2) # [N, L, D] # 加权求和,得到每个汉字对应的词向量集合的表示
|
69 |
+
layer_output = layer_output + weighted_word_embedding
|
70 |
+
|
71 |
+
layer_output = self.dropout(layer_output)
|
72 |
+
layer_output = self.layer_norm(layer_output)
|
73 |
+
|
74 |
+
return layer_output
|
75 |
+
|
76 |
+
|
77 |
+
class LEBertModel(BertPreTrainedModel):
|
78 |
+
"""
|
79 |
+
|
80 |
+
The model can behave as an encoder (with only self-attention) as well
|
81 |
+
as a decoder, in which case a layer of cross-attention is added between
|
82 |
+
the self-attention layers, following the architecture described in `Attention is all you need`_ by Ashish Vaswani,
|
83 |
+
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
84 |
+
|
85 |
+
To behave as an decoder the model needs to be initialized with the
|
86 |
+
:obj:`is_decoder` argument of the configuration set to :obj:`True`.
|
87 |
+
To be used in a Seq2Seq model, the model needs to initialized with both :obj:`is_decoder`
|
88 |
+
argument and :obj:`add_cross_attention` set to :obj:`True`; an
|
89 |
+
:obj:`encoder_hidden_states` is then expected as an input to the forward pass.
|
90 |
+
|
91 |
+
.. _`Attention is all you need`:
|
92 |
+
https://arxiv.org/abs/1706.03762
|
93 |
+
|
94 |
+
"""
|
95 |
+
|
96 |
+
def __init__(self, config):
|
97 |
+
super().__init__(config)
|
98 |
+
self.config = config
|
99 |
+
|
100 |
+
self.embeddings = BertEmbeddings(config)
|
101 |
+
self.encoder = BertEncoder(config)
|
102 |
+
self.pooler = BertPooler(config)
|
103 |
+
|
104 |
+
self.init_weights()
|
105 |
+
|
106 |
+
def get_input_embeddings(self):
|
107 |
+
return self.embeddings.word_embeddings
|
108 |
+
|
109 |
+
def set_input_embeddings(self, value):
|
110 |
+
self.embeddings.word_embeddings = value
|
111 |
+
|
112 |
+
def _prune_heads(self, heads_to_prune):
|
113 |
+
"""Prunes heads of the model.
|
114 |
+
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
115 |
+
See base class PreTrainedModel
|
116 |
+
"""
|
117 |
+
for layer, heads in heads_to_prune.items():
|
118 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
119 |
+
|
120 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
121 |
+
@add_code_sample_docstrings(
|
122 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
123 |
+
checkpoint="bert-base-uncased",
|
124 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
125 |
+
config_class=_CONFIG_FOR_DOC,
|
126 |
+
)
|
127 |
+
def forward(
|
128 |
+
self,
|
129 |
+
input_ids=None,
|
130 |
+
attention_mask=None,
|
131 |
+
token_type_ids=None,
|
132 |
+
word_embeddings=None,
|
133 |
+
word_mask=None,
|
134 |
+
position_ids=None,
|
135 |
+
head_mask=None,
|
136 |
+
inputs_embeds=None,
|
137 |
+
encoder_hidden_states=None,
|
138 |
+
encoder_attention_mask=None,
|
139 |
+
output_attentions=None,
|
140 |
+
output_hidden_states=None,
|
141 |
+
return_dict=None,
|
142 |
+
):
|
143 |
+
r"""
|
144 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
|
145 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
146 |
+
if the model is configured as a decoder.
|
147 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
|
148 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask
|
149 |
+
is used in the cross-attention if the model is configured as a decoder.
|
150 |
+
Mask values selected in ``[0, 1]``:
|
151 |
+
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
|
152 |
+
"""
|
153 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
154 |
+
output_hidden_states = (
|
155 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
156 |
+
)
|
157 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
158 |
+
|
159 |
+
if input_ids is not None and inputs_embeds is not None:
|
160 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
161 |
+
elif input_ids is not None:
|
162 |
+
input_shape = input_ids.size()
|
163 |
+
elif inputs_embeds is not None:
|
164 |
+
input_shape = inputs_embeds.size()[:-1]
|
165 |
+
else:
|
166 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
167 |
+
|
168 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
169 |
+
|
170 |
+
if attention_mask is None:
|
171 |
+
attention_mask = torch.ones(input_shape, device=device)
|
172 |
+
if token_type_ids is None:
|
173 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
174 |
+
|
175 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
176 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
177 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
178 |
+
|
179 |
+
# If a 2D ou 3D attention mask is provided for the cross-attention
|
180 |
+
# we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length]
|
181 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
182 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
183 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
184 |
+
if encoder_attention_mask is None:
|
185 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
186 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
187 |
+
else:
|
188 |
+
encoder_extended_attention_mask = None
|
189 |
+
|
190 |
+
# Prepare head mask if needed
|
191 |
+
# 1.0 in head_mask indicate we keep the head
|
192 |
+
# attention_probs has shape bsz x n_heads x N x N
|
193 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
194 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
195 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
196 |
+
|
197 |
+
embedding_output = self.embeddings(
|
198 |
+
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
|
199 |
+
)
|
200 |
+
encoder_outputs = self.encoder(
|
201 |
+
embedding_output,
|
202 |
+
word_embeddings=word_embeddings,
|
203 |
+
word_mask=word_mask,
|
204 |
+
attention_mask=extended_attention_mask,
|
205 |
+
head_mask=head_mask,
|
206 |
+
encoder_hidden_states=encoder_hidden_states,
|
207 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
208 |
+
output_attentions=output_attentions,
|
209 |
+
output_hidden_states=output_hidden_states,
|
210 |
+
return_dict=return_dict,
|
211 |
+
)
|
212 |
+
sequence_output = encoder_outputs[0]
|
213 |
+
pooled_output = self.pooler(sequence_output)
|
214 |
+
|
215 |
+
if not return_dict:
|
216 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
217 |
+
|
218 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
219 |
+
last_hidden_state=sequence_output,
|
220 |
+
pooler_output=pooled_output,
|
221 |
+
hidden_states=encoder_outputs.hidden_states,
|
222 |
+
attentions=encoder_outputs.attentions,
|
223 |
+
)
|
224 |
+
|
225 |
+
|
226 |
+
class BertEncoder(nn.Module):
|
227 |
+
def __init__(self, config):
|
228 |
+
super().__init__()
|
229 |
+
self.config = config
|
230 |
+
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
|
231 |
+
self.word_embedding_adapter = WordEmbeddingAdapter(config)
|
232 |
+
|
233 |
+
def forward(
|
234 |
+
self,
|
235 |
+
hidden_states,
|
236 |
+
word_embeddings,
|
237 |
+
word_mask,
|
238 |
+
attention_mask=None,
|
239 |
+
head_mask=None,
|
240 |
+
encoder_hidden_states=None,
|
241 |
+
encoder_attention_mask=None,
|
242 |
+
past_key_values=None,
|
243 |
+
use_cache=None,
|
244 |
+
output_attentions=False,
|
245 |
+
output_hidden_states=False,
|
246 |
+
return_dict=False,
|
247 |
+
):
|
248 |
+
all_hidden_states = () if output_hidden_states else None
|
249 |
+
all_attentions = () if output_attentions else None
|
250 |
+
|
251 |
+
next_decoder_cache = () if use_cache else None
|
252 |
+
for i, layer_module in enumerate(self.layer):
|
253 |
+
if output_hidden_states:
|
254 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
255 |
+
|
256 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
257 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
258 |
+
|
259 |
+
if getattr(self.config, "gradient_checkpointing", False):
|
260 |
+
|
261 |
+
if use_cache:
|
262 |
+
# logger.warning(
|
263 |
+
# "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
264 |
+
# )
|
265 |
+
use_cache = False
|
266 |
+
|
267 |
+
def create_custom_forward(module):
|
268 |
+
def custom_forward(*inputs):
|
269 |
+
return module(*inputs, output_attentions)
|
270 |
+
|
271 |
+
return custom_forward
|
272 |
+
|
273 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
274 |
+
create_custom_forward(layer_module),
|
275 |
+
hidden_states,
|
276 |
+
attention_mask,
|
277 |
+
layer_head_mask,
|
278 |
+
encoder_hidden_states,
|
279 |
+
encoder_attention_mask,
|
280 |
+
)
|
281 |
+
else:
|
282 |
+
layer_outputs = layer_module(
|
283 |
+
hidden_states,
|
284 |
+
attention_mask,
|
285 |
+
layer_head_mask,
|
286 |
+
encoder_hidden_states,
|
287 |
+
encoder_attention_mask,
|
288 |
+
past_key_value,
|
289 |
+
output_attentions,
|
290 |
+
)
|
291 |
+
hidden_states = layer_outputs[0]
|
292 |
+
if use_cache:
|
293 |
+
next_decoder_cache += (layer_outputs[-1],)
|
294 |
+
|
295 |
+
if output_attentions:
|
296 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
297 |
+
|
298 |
+
# 在第i层之后,进行融合
|
299 |
+
# if i == self.config.add_layer:
|
300 |
+
if i >= int(self.config.add_layer): # edit by wjn
|
301 |
+
hidden_states = self.word_embedding_adapter(hidden_states, word_embeddings, word_mask)
|
302 |
+
|
303 |
+
if output_hidden_states:
|
304 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
305 |
+
|
306 |
+
# if not return_dict:
|
307 |
+
# return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
308 |
+
if not return_dict:
|
309 |
+
return tuple(
|
310 |
+
v
|
311 |
+
for v in [
|
312 |
+
hidden_states,
|
313 |
+
next_decoder_cache,
|
314 |
+
all_hidden_states,
|
315 |
+
all_attentions,
|
316 |
+
# all_cross_attentions,
|
317 |
+
]
|
318 |
+
if v is not None
|
319 |
+
)
|
320 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
321 |
+
last_hidden_state=hidden_states,
|
322 |
+
hidden_states=all_hidden_states,
|
323 |
+
attentions=all_attentions,
|
324 |
+
past_key_values=next_decoder_cache,
|
325 |
+
)
|