DeepLearning101's picture
Upload 4 files
b0ebb46
raw
history blame
52.1 kB
"""
Head Tuning with Prefix / Adapter
"""
from typing import Optional, List, Union, Tuple
import torch
from torch._C import NoopLogger
import torch.nn
import torch.nn.functional as F
from torch import Tensor
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
from transformers import BertModel, BertPreTrainedModel
from transformers import RobertaModel, RobertaPreTrainedModel
from transformers.models.deberta.modeling_deberta import DebertaModel, DebertaPreTrainedModel, ContextPooler, StableDropout
from transformers.models.gpt2.modeling_gpt2 import GPT2Model, GPT2PreTrainedModel
from transformers.models.bart.modeling_bart import BartPretrainedModel, BartClassificationHead, BartModel
from transformers.models.roberta.modeling_roberta import RobertaClassificationHead
from transformers.models.bart.configuration_bart import BartConfig
from transformers.modeling_outputs import SequenceClassifierOutput, Seq2SeqSequenceClassifierOutput, SequenceClassifierOutputWithPast
from models.basic_modules.prefix_encoder import PrefixEncoder
from models.basic_modules.adapter import BertAdaModel, RobertaAdaModel, init_adapter
from tools.model_utils.parameter_freeze import ParameterFreeze
from tools.runner_utils.log_util import logging
logger = logging.getLogger(__name__)
freezer = ParameterFreeze()
## ======== BERT ========
# Vanilla Fine-tuning For BERT
class BertForSequenceClassification(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = BertModel(config)
if self.config.use_freezing:
self.bert = freezer.freeze_lm(self.bert)
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
def freeze_backbone(self, use_freezing: bool=True):
if use_freezing:
self.bert = freezer.freeze_lm(self.bert)
else:
self.bert = freezer.unfreeze_lm(self.bert)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# print("input_ids.shape=", input_ids.shape) # e.g., [8, 128]
# print("attention_mask.shape=", attention_mask.shape) # e.g., [8, 128]
# print("token_type_ids.shape=", token_type_ids.shape) # e.g., [8, 128]
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Prefix-tuning For BERT
class BertPrefixForSequenceClassification(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = BertModel(config)
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
# for param in self.bert.parameters():
# param.requires_grad = False
if self.config.use_freezing:
self.bert = freezer.freeze_lm(self.bert)
self.pre_seq_len = config.pre_seq_len
self.n_layer = config.num_hidden_layers
self.n_head = config.num_attention_heads
self.n_embd = config.hidden_size // config.num_attention_heads
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
self.prefix_encoder = PrefixEncoder(config)
bert_param = 0
for name, param in self.bert.named_parameters():
bert_param += param.numel()
all_param = 0
for name, param in self.named_parameters():
all_param += param.numel()
total_param = all_param - bert_param
print("total param is {}".format(total_param)) # 9860105
def freeze_backbone(self, use_freezing: bool=True):
if use_freezing:
self.bert = freezer.freeze_lm(self.bert)
else:
self.bert = freezer.unfreeze_lm(self.bert)
def get_prompt(self, batch_size):
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
past_key_values = self.prefix_encoder(prefix_tokens)
# bsz, seqlen, _ = past_key_values.shape
past_key_values = past_key_values.view(
batch_size,
self.pre_seq_len,
self.n_layer * 2,
self.n_head,
self.n_embd
)
past_key_values = self.dropout(past_key_values)
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
return past_key_values
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# print("input_ids.shape=", input_ids.shape) # e.g., [8, 128]
# print("attention_mask.shape=", attention_mask.shape) # e.g., [8, 128]
# print("token_type_ids.shape=", token_type_ids.shape) # e.g., [8, 128]
batch_size = input_ids.shape[0]
past_key_values = self.get_prompt(batch_size=batch_size)
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
if position_ids is None:
position_ids = torch.tensor([i for i in range(input_ids.shape[-1])]).expand(batch_size, -1).to(self.bert.device)
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
past_key_values=past_key_values,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Prompt-tuning For BERT
class BertPtuningForSequenceClassification(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertModel(config)
self.embeddings = self.bert.embeddings
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
# for param in self.bert.parameters():
# param.requires_grad = False
if self.config.use_freezing:
self.bert = freezer.freeze_lm(self.bert)
self.pre_seq_len = config.pre_seq_len
self.n_layer = config.num_hidden_layers
self.n_head = config.num_attention_heads
self.n_embd = config.hidden_size // config.num_attention_heads
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
def freeze_backbone(self, use_freezing: bool=True):
if use_freezing:
self.bert = freezer.freeze_lm(self.bert)
else:
self.bert = freezer.unfreeze_lm(self.bert)
def get_prompt(self, batch_size):
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
prompts = self.prefix_encoder(prefix_tokens)
return prompts
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size = input_ids.shape[0]
raw_embedding = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
)
prompts = self.get_prompt(batch_size=batch_size)
inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
outputs = self.bert(
# input_ids,
attention_mask=attention_mask,
# token_type_ids=token_type_ids,
# position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
# past_key_values=past_key_values,
)
# pooled_output = outputs[1]
sequence_output = outputs[0]
sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
first_token_tensor = sequence_output[:, 0]
pooled_output = self.bert.pooler.dense(first_token_tensor)
pooled_output = self.bert.pooler.activation(pooled_output)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Adapter-tuning For BERT
class BertAdapterForSequenceClassification(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertAdaModel(config)
self.embeddings = self.bert.embeddings
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
# for param in self.bert.parameters():
# param.requires_grad = False
if self.config.use_freezing:
self.bert = freezer.freeze_lm_component(self.bert, "adapter")
def freeze_backbone(self, use_freezing: bool=True):
if use_freezing:
self.bert = freezer.freeze_lm_component(self.bert, "adapter")
else:
self.bert = freezer.unfreeze_lm(self.bert)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size = input_ids.shape[0]
inputs_embeds = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
)
outputs = self.bert(
# input_ids,
attention_mask=attention_mask,
# token_type_ids=token_type_ids,
# position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
# past_key_values=past_key_values,
)
# pooled_output = outputs[1]
sequence_output = outputs[0]
# sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
first_token_tensor = sequence_output[:, 0]
pooled_output = self.bert.pooler.dense(first_token_tensor)
pooled_output = self.bert.pooler.activation(pooled_output)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# ========= RoBERTa =========
# Vanilla Fine-tuning For RoBERTa
class RobertaForSequenceClassification(RobertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.roberta = RobertaModel(config)
if self.config.use_freezing:
self.roberta = freezer.freeze_lm(self.roberta)
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
# self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
self.classifier = RobertaClassificationHead(config)
self.init_weights()
def freeze_backbone(self, use_freezing: bool=True):
if use_freezing:
self.roberta = freezer.freeze_lm(self.roberta)
else:
self.roberta = freezer.unfreeze_lm(self.roberta)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Prefix-tuning For RoBERTa
class RobertaPrefixForSequenceClassification(RobertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.roberta = RobertaModel(config)
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
# self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
self.classifier = RobertaClassificationHead(config)
self.init_weights()
for param in self.roberta.parameters():
param.requires_grad = False
self.pre_seq_len = config.pre_seq_len
self.n_layer = config.num_hidden_layers
self.n_head = config.num_attention_heads
self.n_embd = config.hidden_size // config.num_attention_heads
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
self.prefix_encoder = PrefixEncoder(config)
bert_param = 0
for name, param in self.roberta.named_parameters():
bert_param += param.numel()
all_param = 0
for name, param in self.named_parameters():
all_param += param.numel()
total_param = all_param - bert_param
print("total param is {}".format(total_param)) # 9860105
def freeze_backbone(self, use_freezing: bool=True):
if use_freezing:
self.roberta = freezer.freeze_lm(self.roberta)
else:
self.roberta = freezer.unfreeze_lm(self.roberta)
def get_prompt(self, batch_size):
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
# print("prefix_tokens.shape=", prefix_tokens.shape)
past_key_values = self.prefix_encoder(prefix_tokens)
# print("past_key_values[0].shape=", past_key_values[0].shape)
past_key_values = past_key_values.view(
batch_size,
self.pre_seq_len,
self.n_layer * 2,
self.n_head,
self.n_embd
)
# print("past_key_values[0].shape=", past_key_values[0].shape)
past_key_values = self.dropout(past_key_values)
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
# print("past_key_values[0].shape=", past_key_values[0].shape)
return past_key_values
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size = input_ids.shape[0]
past_key_values = self.get_prompt(batch_size=batch_size)
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.roberta.device)
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
if position_ids is None:
position_ids = torch.tensor([i for i in range(input_ids.shape[-1])]).expand(batch_size, -1).to(self.roberta.device)
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
past_key_values=past_key_values,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
labels = (labels < 0).long().to(labels.device) + labels
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Prompt-tuning For RoBERTa
class RobertaPtuningForSequenceClassification(RobertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.roberta = RobertaModel(config)
self.embeddings = self.roberta.embeddings
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
# self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
self.classifier = RobertaClassificationHead(config)
# for param in self.roberta.parameters():
# param.requires_grad = False
if self.config.use_freezing:
self.roberta = freezer.freeze_lm(self.roberta)
self.pre_seq_len = config.pre_seq_len
self.n_layer = config.num_hidden_layers
self.n_head = config.num_attention_heads
self.n_embd = config.hidden_size // config.num_attention_heads
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
def freeze_backbone(self, use_freezing: bool=True):
if use_freezing:
self.roberta = freezer.freeze_lm(self.roberta)
else:
self.roberta = freezer.unfreeze_lm(self.roberta)
def get_prompt(self, batch_size):
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
prompts = self.prefix_encoder(prefix_tokens)
return prompts
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size = input_ids.shape[0]
raw_embedding = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
)
prompts = self.get_prompt(batch_size=batch_size)
inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
# print(input_embeddings.shape)
# exit()
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.roberta.device)
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
outputs = self.roberta(
# input_ids,
attention_mask=attention_mask,
# token_type_ids=token_type_ids,
# position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
# past_key_values=past_key_values,
)
# pooled_output = outputs[1]
sequence_output = outputs[0]
sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
first_token_tensor = sequence_output[:, 0]
pooled_output = self.roberta.pooler.dense(first_token_tensor)
pooled_output = self.roberta.pooler.activation(pooled_output)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Adapter-tuning For RoBERTa
class RobertaAdapterForSequenceClassification(RobertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.roberta = RobertaAdaModel(config)
self.embeddings = self.roberta.embeddings
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
# self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
self.classifier = RobertaClassificationHead(config)
self.init_weights()
# for param in self.roberta.parameters():
# param.requires_grad = False
self.roberta = init_adapter(self.roberta)
if self.config.use_freezing:
self.roberta = freezer.freeze_lm_component(self.roberta, "adapter")
def freeze_backbone(self, use_freezing: bool=True):
if use_freezing:
self.roberta = freezer.freeze_lm_component(self.roberta, "adapter")
else:
self.roberta = freezer.unfreeze_lm(self.roberta)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size = input_ids.shape[0]
inputs_embeds = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
)
outputs = self.roberta(
# input_ids,
attention_mask=attention_mask,
# token_type_ids=token_type_ids,
# position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
# past_key_values=past_key_values,
)
# pooled_output = outputs[1]
sequence_output = outputs[0]
# sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
first_token_tensor = sequence_output[:, 0]
pooled_output = self.roberta.pooler.dense(first_token_tensor)
pooled_output = self.roberta.pooler.activation(pooled_output)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# ========= DeBERTa =========
# Prefix-tuning For DeBERTa
class DebertaPrefixForSequenceClassification(DebertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.deberta = DebertaModel(config)
self.pooler = ContextPooler(config)
output_dim = self.pooler.output_dim
self.classifier = torch.nn.Linear(output_dim, self.num_labels)
self.dropout = StableDropout(config.hidden_dropout_prob)
self.init_weights()
# for param in self.deberta.parameters():
# param.requires_grad = False
if self.config.use_freezing:
self.deberta = freezer.freeze_lm(self.deberta)
self.pre_seq_len = config.pre_seq_len
self.n_layer = config.num_hidden_layers
self.n_head = config.num_attention_heads
self.n_embd = config.hidden_size // config.num_attention_heads
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
self.prefix_encoder = PrefixEncoder(config)
deberta_param = 0
for name, param in self.deberta.named_parameters():
deberta_param += param.numel()
all_param = 0
for name, param in self.named_parameters():
all_param += param.numel()
total_param = all_param - deberta_param
print("total param is {}".format(total_param)) # 9860105
def freeze_backbone(self, use_freezing: bool=True):
if use_freezing:
self.deberta = freezer.freeze_lm(self.deberta)
else:
self.deberta = freezer.unfreeze_lm(self.deberta)
def get_prompt(self, batch_size):
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.deberta.device)
past_key_values = self.prefix_encoder(prefix_tokens)
# bsz, seqlen, _ = past_key_values.shape
past_key_values = past_key_values.view(
batch_size,
self.pre_seq_len,
self.n_layer * 2,
self.n_head,
self.n_embd
)
past_key_values = self.dropout(past_key_values)
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
return past_key_values
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size = input_ids.shape[0]
past_key_values = self.get_prompt(batch_size=batch_size)
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.deberta.device)
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
outputs = self.deberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
past_key_values=past_key_values,
)
encoder_layer = outputs[0]
pooled_output = self.pooler(encoder_layer)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.num_labels == 1:
# regression task
loss_fn = torch.nn.MSELoss()
logits = logits.view(-1).to(labels.dtype)
loss = loss_fn(logits, labels.view(-1))
elif labels.dim() == 1 or labels.size(-1) == 1:
label_index = (labels >= 0).nonzero()
labels = labels.long()
if label_index.size(0) > 0:
labeled_logits = torch.gather(logits, 0, label_index.expand(label_index.size(0), logits.size(1)))
labels = torch.gather(labels, 0, label_index.view(-1))
loss_fct = CrossEntropyLoss()
loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
else:
loss = torch.tensor(0).to(logits)
else:
log_softmax = torch.nn.LogSoftmax(-1)
loss = -((log_softmax(logits) * labels).sum(-1)).mean()
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
else:
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# GPT2 for classification
class GPT2ForSequenceClassification(GPT2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = GPT2Model(config)
self.score = torch.nn.Linear(config.n_embd, self.num_labels, bias=False)
# Model parallel
self.model_parallel = False
self.device_map = None
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]
assert (
self.config.pad_token_id is not None or batch_size == 1
), "Cannot handle batch sizes > 1 if no padding token is defined."
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
else:
sequence_lengths = -1
logger.warning(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
# Bart for classification
class BartForSequenceClassification(BartPretrainedModel):
def __init__(self, config: BartConfig, **kwargs):
super().__init__(config, **kwargs)
self.model = BartModel(config)
self.classification_head = BartClassificationHead(
config.d_model,
config.d_model,
config.num_labels,
config.classifier_dropout,
)
self.model._init_weights(self.classification_head.dense)
self.model._init_weights(self.classification_head.out_proj)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
if input_ids is None and inputs_embeds is not None:
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0] # last hidden state
# print("hidden_states.shape=", hidden_states.shape) # [bz, seq_len, dim]
eos_mask = input_ids.eq(self.config.eos_token_id)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
:, -1, :
]
logits = self.classification_head(sentence_representation)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqSequenceClassifierOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)