Spaces:
Sleeping
Sleeping
File size: 7,186 Bytes
45311fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# -*- coding: utf-8 -*-
# @Time : 2023/3/23 1:02 p.m.
# @Author : Jianing Wang
# @File : gpt_response.py
import os
import sys
import torch
import openai
import time
"""
Call for GPT-style LLM.
The output format is the same as OpenAI (e.g., GPT-3.5 text-davinci-003)
"""
class GPTResponse:
def __init__(self, model_type: str, data_path: str) -> None:
assert model_type in ["gpt2", "gpt3"]
self.model_type = model_type
if self.model_type == "gpt3":
with open(os.path.join(data_path, 'openai_key.txt'), 'r') as f:
key = f.readline().strip()
openai.api_key = key
def call_for_gpt3_response(self, prompt, l, model_name, temp=0, num_log_probs=None, echo=False, n=None):
"""
call GPT-3 API until result is provided and then return it
"""
response = None
received = False
while not received:
try:
response = openai.Completion.create(engine=model_name, prompt=prompt, max_tokens=l, temperature=temp,
logprobs=num_log_probs, echo=echo, stop='\n', n=n)
received = True
except:
error = sys.exc_info()[0]
if error == openai.error.InvalidRequestError: # something is wrong: e.g. prompt too long
print(f"InvalidRequestError\nPrompt passed in:\n\n{prompt}\n\n")
assert False
print("API error:", error)
time.sleep(1)
return response
def call_for_gpt2_response(self, gpt2_tokenizer, logits, total_sequences, l=10, num_log_probs=None, echo=False, n=None):
"""
Obtain the prediction logits from gpt2 in local, and convert it to the value that can match the response from OpenAI
"""
if not echo:
# get the top tokens and probs for the generated l tokens
probs = torch.softmax(logits[:,-l-1:], dim=2).cpu()
else:
# get the top tokens and probs for the context and the generated l tokens
probs = torch.softmax(logits, dim=2).cpu()
# print("probs=", probs)
top_probs, top_tokens = torch.topk(probs, k=num_log_probs)
logprobs = torch.log(probs)
top_log_probs = torch.log(top_probs)
# create the return value to resemble OpenAI
return_json = {}
choices = []
# print("="*50)
for batch_id in range(len(logits)):
curr_json = {}
# text is just the optional context and next l tokens
if not echo:
curr_json['text'] = gpt2_tokenizer.decode(total_sequences[batch_id][-l:], skip_special_tokens=True)
else:
curr_json['text'] = gpt2_tokenizer.decode(total_sequences[batch_id], skip_special_tokens=True)
# fill the return json with the top tokens and probs to match the OpenAI return value.
if num_log_probs is not None:
curr_json['logprobs'] = {}
curr_json['logprobs']['top_logprobs'] = []
curr_json['logprobs']['token_logprobs'] = []
curr_json['logprobs']['tokens'] = []
if not echo:
# cutoff the -1 here because the probs are shifted one over for LMs
for current_element_top_log_probs, current_element_top_tokens in zip(top_log_probs[batch_id][:-1], top_tokens[batch_id][:-1]):
# tokens is a list of the top token at each position
curr_json['logprobs']['tokens'].append(gpt2_tokenizer.decode([current_element_top_tokens[0]]))
# token_logprobs is a list of the logprob of the top token at each position
curr_json['logprobs']['token_logprobs'].append(current_element_top_log_probs[0].item())
# top_logprobs is a list of dicts for the top K tokens. with each entry being {'token_name': log_prob}
temp = {}
for log_prob, token in zip(current_element_top_log_probs, current_element_top_tokens):
temp[gpt2_tokenizer.decode(token.item())] = log_prob.item()
curr_json['logprobs']['top_logprobs'].append(temp)
else:
# same as not above but small tweaks
# we add null to the front because for the GPT models, they have null probability for the first token
# (for some reason they don't have an beginning of sentence token)
curr_json['logprobs']['top_logprobs'].append('null')
# cutoff the -1 here because the probs are shifted one over for LMs
for index, (current_element_top_log_probs, current_element_top_tokens) in enumerate(zip(top_log_probs[batch_id][:-1], top_tokens[batch_id][:-1])):
# skip padding tokens
if total_sequences[batch_id][index].item() == 50256:
continue
temp = {}
for log_prob, token in zip(current_element_top_log_probs, current_element_top_tokens):
temp[gpt2_tokenizer.decode(token.item())] = log_prob.item()
curr_json['logprobs']['top_logprobs'].append(temp)
for index in range(len(probs[batch_id])):
curr_json['logprobs']['tokens'].append(gpt2_tokenizer.decode([total_sequences[batch_id][index]]))
curr_json['logprobs']['token_logprobs'].append('null')
for index, log_probs_token_position_j in enumerate(logprobs[batch_id][:-1]):
# probs are left shifted for LMs
curr_json['logprobs']['token_logprobs'].append(log_probs_token_position_j[total_sequences[batch_id][index+1]])
choices.append(curr_json)
# print("curr_json=", curr_json)
'''
e.g.,
num_tokens_to_predict=1
curr_json= {
'text': ' I', # 当前生成的top词
'logprobs': {'top_logprobs': [{' I': -3.4267239570617676, '\n': -3.5073862075805664, ...], # top100词及其socre
'token_logprobs': [-3.4267239570617676], # 当前top词的score
'tokens': [' I']}
}
num_tokens_to_predict=2
curr_json= {
'text': '\nThe', # 如果指定生成两个词,则为两个词
'logprobs': {'top_logprobs': [ # 两个位置对应的预测的score
{'\n': -3.186706304550171, '\xa0': -3.222092390060425, ' We': -6.781067848205566, ...},
{'The': -2.5251243114471436, '"': -2.857935667037964, ...],
'token_logprobs': [-3.186706304550171, -2.5251243114471436], # 生成的词的score
'tokens': ['\n', 'The']}
}
'''
return_json['choices'] = choices
# print("="*50)
# print("return_json=", return_json)
return return_json
|