Spaces:
Sleeping
Sleeping
File size: 19,975 Bytes
437e42f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
import torch
import torch.nn as nn
from typing import List, Optional
class CRF(nn.Module):
"""Conditional random field.
This module implements a conditional random field [LMP01]_. The forward computation
of this class computes the log likelihood of the given sequence of tags and
emission score tensor. This class also has `~CRF.decode` method which finds
the best tag sequence given an emission score tensor using `Viterbi algorithm`_.
Args:
num_tags: Number of tags.
batch_first: Whether the first dimension corresponds to the size of a minibatch.
Attributes:
start_transitions (`~torch.nn.Parameter`): Start transition score tensor of size
``(num_tags,)``.
end_transitions (`~torch.nn.Parameter`): End transition score tensor of size
``(num_tags,)``.
transitions (`~torch.nn.Parameter`): Transition score tensor of size
``(num_tags, num_tags)``.
.. [LMP01] Lafferty, J., McCallum, A., Pereira, F. (2001).
"Conditional random fields: Probabilistic models for segmenting and
labeling sequence data". *Proc. 18th International Conf. on Machine
Learning*. Morgan Kaufmann. pp. 282–289.
.. _Viterbi algorithm: https://en.wikipedia.org/wiki/Viterbi_algorithm
"""
def __init__(self, num_tags: int, batch_first: bool = False) -> None:
if num_tags <= 0:
raise ValueError(f"invalid number of tags: {num_tags}")
super().__init__()
self.num_tags = num_tags
self.batch_first = batch_first
self.start_transitions = nn.Parameter(torch.empty(num_tags))
self.end_transitions = nn.Parameter(torch.empty(num_tags))
self.transitions = nn.Parameter(torch.empty(num_tags, num_tags))
self.reset_parameters()
def reset_parameters(self) -> None:
"""Initialize the transition parameters.
The parameters will be initialized randomly from a uniform distribution
between -0.1 and 0.1.
"""
nn.init.uniform_(self.start_transitions, -0.1, 0.1)
nn.init.uniform_(self.end_transitions, -0.1, 0.1)
nn.init.uniform_(self.transitions, -0.1, 0.1)
def __repr__(self) -> str:
return f"{self.__class__.__name__}(num_tags={self.num_tags})"
def forward(self, emissions: torch.Tensor,
tags: torch.LongTensor,
mask: Optional[torch.ByteTensor] = None,
reduction: str = "mean") -> torch.Tensor:
"""Compute the conditional log likelihood of a sequence of tags given emission scores.
Args:
emissions (`~torch.Tensor`): Emission score tensor of size
``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``,
``(batch_size, seq_length, num_tags)`` otherwise.
tags (`~torch.LongTensor`): Sequence of tags tensor of size
``(seq_length, batch_size)`` if ``batch_first`` is ``False``,
``(batch_size, seq_length)`` otherwise.
mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)``
if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise.
reduction: Specifies the reduction to apply to the output:
``none|sum|mean|token_mean``. ``none``: no reduction will be applied.
``sum``: the output will be summed over batches. ``mean``: the output will be
averaged over batches. ``token_mean``: the output will be averaged over tokens.
Returns:
`~torch.Tensor`: The log likelihood. This will have size ``(batch_size,)`` if
reduction is ``none``, ``()`` otherwise.
"""
if reduction not in ("none", "sum", "mean", "token_mean"):
raise ValueError(f"invalid reduction: {reduction}")
if mask is None:
mask = torch.ones_like(tags, dtype=torch.uint8, device=tags.device)
if mask.dtype != torch.uint8:
mask = mask.byte()
self._validate(emissions, tags=tags, mask=mask)
if self.batch_first:
emissions = emissions.transpose(0, 1)
tags = tags.transpose(0, 1)
mask = mask.transpose(0, 1)
# shape: (batch_size,)
numerator = self._compute_score(emissions, tags, mask)
# shape: (batch_size,)
denominator = self._compute_normalizer(emissions, mask)
# shape: (batch_size,)
llh = numerator - denominator
if reduction == "none":
return llh
if reduction == "sum":
return llh.sum()
if reduction == "mean":
return llh.mean()
return llh.sum() / mask.float().sum()
def decode(self, emissions: torch.Tensor,
mask: Optional[torch.ByteTensor] = None,
nbest: Optional[int] = None,
pad_tag: Optional[int] = None) -> List[List[List[int]]]:
"""Find the most likely tag sequence using Viterbi algorithm.
Args:
emissions (`~torch.Tensor`): Emission score tensor of size
``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``,
``(batch_size, seq_length, num_tags)`` otherwise.
mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)``
if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise.
nbest (`int`): Number of most probable paths for each sequence
pad_tag (`int`): Tag at padded positions. Often input varies in length and
the length will be padded to the maximum length in the batch. Tags at
the padded positions will be assigned with a padding tag, i.e. `pad_tag`
Returns:
A PyTorch tensor of the best tag sequence for each batch of shape
(nbest, batch_size, seq_length)
"""
if nbest is None:
nbest = 1
if mask is None:
mask = torch.ones(emissions.shape[:2], dtype=torch.uint8,
device=emissions.device)
if mask.dtype != torch.uint8:
mask = mask.byte()
self._validate(emissions, mask=mask)
if self.batch_first:
emissions = emissions.transpose(0, 1)
mask = mask.transpose(0, 1)
if nbest == 1:
return self._viterbi_decode(emissions, mask, pad_tag).unsqueeze(0)
return self._viterbi_decode_nbest(emissions, mask, nbest, pad_tag)
def _validate(self, emissions: torch.Tensor,
tags: Optional[torch.LongTensor] = None,
mask: Optional[torch.ByteTensor] = None) -> None:
if emissions.dim() != 3:
raise ValueError(f"emissions must have dimension of 3, got {emissions.dim()}")
if emissions.size(2) != self.num_tags:
raise ValueError(
f"expected last dimension of emissions is {self.num_tags}, "
f"got {emissions.size(2)}")
if tags is not None:
if emissions.shape[:2] != tags.shape:
raise ValueError(
"the first two dimensions of emissions and tags must match, "
f"got {tuple(emissions.shape[:2])} and {tuple(tags.shape)}")
if mask is not None:
if emissions.shape[:2] != mask.shape:
raise ValueError(
"the first two dimensions of emissions and mask must match, "
f"got {tuple(emissions.shape[:2])} and {tuple(mask.shape)}")
no_empty_seq = not self.batch_first and mask[0].all()
no_empty_seq_bf = self.batch_first and mask[:, 0].all()
if not no_empty_seq and not no_empty_seq_bf:
raise ValueError("mask of the first timestep must all be on")
def _compute_score(self, emissions: torch.Tensor,
tags: torch.LongTensor,
mask: torch.ByteTensor) -> torch.Tensor:
# emissions: (seq_length, batch_size, num_tags)
# tags: (seq_length, batch_size)
# mask: (seq_length, batch_size)
seq_length, batch_size = tags.shape
mask = mask.float()
# Start transition score and first emission
# shape: (batch_size,)
score = self.start_transitions[tags[0]]
score += emissions[0, torch.arange(batch_size), tags[0]]
for i in range(1, seq_length):
# Transition score to next tag, only added if next timestep is valid (mask == 1)
# shape: (batch_size,)
score += self.transitions[tags[i - 1], tags[i]] * mask[i]
# Emission score for next tag, only added if next timestep is valid (mask == 1)
# shape: (batch_size,)
score += emissions[i, torch.arange(batch_size), tags[i]] * mask[i]
# End transition score
# shape: (batch_size,)
seq_ends = mask.long().sum(dim=0) - 1
# shape: (batch_size,)
last_tags = tags[seq_ends, torch.arange(batch_size)]
# shape: (batch_size,)
score += self.end_transitions[last_tags]
return score
def _compute_normalizer(self, emissions: torch.Tensor,
mask: torch.ByteTensor) -> torch.Tensor:
# emissions: (seq_length, batch_size, num_tags)
# mask: (seq_length, batch_size)
seq_length = emissions.size(0)
# Start transition score and first emission; score has size of
# (batch_size, num_tags) where for each batch, the j-th column stores
# the score that the first timestep has tag j
# shape: (batch_size, num_tags)
score = self.start_transitions + emissions[0]
for i in range(1, seq_length):
# Broadcast score for every possible next tag
# shape: (batch_size, num_tags, 1)
broadcast_score = score.unsqueeze(2)
# Broadcast emission score for every possible current tag
# shape: (batch_size, 1, num_tags)
broadcast_emissions = emissions[i].unsqueeze(1)
# Compute the score tensor of size (batch_size, num_tags, num_tags) where
# for each sample, entry at row i and column j stores the sum of scores of all
# possible tag sequences so far that end with transitioning from tag i to tag j
# and emitting
# shape: (batch_size, num_tags, num_tags)
next_score = broadcast_score + self.transitions + broadcast_emissions
# Sum over all possible current tags, but we"re in score space, so a sum
# becomes a log-sum-exp: for each sample, entry i stores the sum of scores of
# all possible tag sequences so far, that end in tag i
# shape: (batch_size, num_tags)
next_score = torch.logsumexp(next_score, dim=1)
# Set score to the next score if this timestep is valid (mask == 1)
# shape: (batch_size, num_tags)
score = torch.where(mask[i].unsqueeze(1), next_score, score)
# End transition score
# shape: (batch_size, num_tags)
score += self.end_transitions
# Sum (log-sum-exp) over all possible tags
# shape: (batch_size,)
return torch.logsumexp(score, dim=1)
def _viterbi_decode(self, emissions: torch.FloatTensor,
mask: torch.ByteTensor,
pad_tag: Optional[int] = None) -> List[List[int]]:
# emissions: (seq_length, batch_size, num_tags)
# mask: (seq_length, batch_size)
# return: (batch_size, seq_length)
if pad_tag is None:
pad_tag = 0
device = emissions.device
seq_length, batch_size = mask.shape
# Start transition and first emission
# shape: (batch_size, num_tags)
score = self.start_transitions + emissions[0]
history_idx = torch.zeros((seq_length, batch_size, self.num_tags),
dtype=torch.long, device=device)
oor_idx = torch.zeros((batch_size, self.num_tags),
dtype=torch.long, device=device)
oor_tag = torch.full((seq_length, batch_size), pad_tag,
dtype=torch.long, device=device)
# - score is a tensor of size (batch_size, num_tags) where for every batch,
# value at column j stores the score of the best tag sequence so far that ends
# with tag j
# - history_idx saves where the best tags candidate transitioned from; this is used
# when we trace back the best tag sequence
# - oor_idx saves the best tags candidate transitioned from at the positions
# where mask is 0, i.e. out of range (oor)
# Viterbi algorithm recursive case: we compute the score of the best tag sequence
# for every possible next tag
for i in range(1, seq_length):
# Broadcast viterbi score for every possible next tag
# shape: (batch_size, num_tags, 1)
broadcast_score = score.unsqueeze(2)
# Broadcast emission score for every possible current tag
# shape: (batch_size, 1, num_tags)
broadcast_emission = emissions[i].unsqueeze(1)
# Compute the score tensor of size (batch_size, num_tags, num_tags) where
# for each sample, entry at row i and column j stores the score of the best
# tag sequence so far that ends with transitioning from tag i to tag j and emitting
# shape: (batch_size, num_tags, num_tags)
next_score = broadcast_score + self.transitions + broadcast_emission
# Find the maximum score over all possible current tag
# shape: (batch_size, num_tags)
next_score, indices = next_score.max(dim=1)
# Set score to the next score if this timestep is valid (mask == 1)
# and save the index that produces the next score
# shape: (batch_size, num_tags)
score = torch.where(mask[i].unsqueeze(-1), next_score, score)
indices = torch.where(mask[i].unsqueeze(-1), indices, oor_idx)
history_idx[i - 1] = indices
# End transition score
# shape: (batch_size, num_tags)
end_score = score + self.end_transitions
_, end_tag = end_score.max(dim=1)
# shape: (batch_size,)
seq_ends = mask.long().sum(dim=0) - 1
# insert the best tag at each sequence end (last position with mask == 1)
history_idx = history_idx.transpose(1, 0).contiguous()
history_idx.scatter_(1, seq_ends.view(-1, 1, 1).expand(-1, 1, self.num_tags),
end_tag.view(-1, 1, 1).expand(-1, 1, self.num_tags))
history_idx = history_idx.transpose(1, 0).contiguous()
# The most probable path for each sequence
best_tags_arr = torch.zeros((seq_length, batch_size),
dtype=torch.long, device=device)
best_tags = torch.zeros(batch_size, 1, dtype=torch.long, device=device)
for idx in range(seq_length - 1, -1, -1):
best_tags = torch.gather(history_idx[idx], 1, best_tags)
best_tags_arr[idx] = best_tags.data.view(batch_size)
return torch.where(mask, best_tags_arr, oor_tag).transpose(0, 1)
def _viterbi_decode_nbest(self, emissions: torch.FloatTensor,
mask: torch.ByteTensor,
nbest: int,
pad_tag: Optional[int] = None) -> List[List[List[int]]]:
# emissions: (seq_length, batch_size, num_tags)
# mask: (seq_length, batch_size)
# return: (nbest, batch_size, seq_length)
if pad_tag is None:
pad_tag = 0
device = emissions.device
seq_length, batch_size = mask.shape
# Start transition and first emission
# shape: (batch_size, num_tags)
score = self.start_transitions + emissions[0]
history_idx = torch.zeros((seq_length, batch_size, self.num_tags, nbest),
dtype=torch.long, device=device)
oor_idx = torch.zeros((batch_size, self.num_tags, nbest),
dtype=torch.long, device=device)
oor_tag = torch.full((seq_length, batch_size, nbest), pad_tag,
dtype=torch.long, device=device)
# + score is a tensor of size (batch_size, num_tags) where for every batch,
# value at column j stores the score of the best tag sequence so far that ends
# with tag j
# + history_idx saves where the best tags candidate transitioned from; this is used
# when we trace back the best tag sequence
# - oor_idx saves the best tags candidate transitioned from at the positions
# where mask is 0, i.e. out of range (oor)
# Viterbi algorithm recursive case: we compute the score of the best tag sequence
# for every possible next tag
for i in range(1, seq_length):
if i == 1:
broadcast_score = score.unsqueeze(-1)
broadcast_emission = emissions[i].unsqueeze(1)
# shape: (batch_size, num_tags, num_tags)
next_score = broadcast_score + self.transitions + broadcast_emission
else:
broadcast_score = score.unsqueeze(-1)
broadcast_emission = emissions[i].unsqueeze(1).unsqueeze(2)
# shape: (batch_size, num_tags, nbest, num_tags)
next_score = broadcast_score + self.transitions.unsqueeze(1) + broadcast_emission
# Find the top `nbest` maximum score over all possible current tag
# shape: (batch_size, nbest, num_tags)
next_score, indices = next_score.view(batch_size, -1, self.num_tags).topk(nbest, dim=1)
if i == 1:
score = score.unsqueeze(-1).expand(-1, -1, nbest)
indices = indices * nbest
# convert to shape: (batch_size, num_tags, nbest)
next_score = next_score.transpose(2, 1)
indices = indices.transpose(2, 1)
# Set score to the next score if this timestep is valid (mask == 1)
# and save the index that produces the next score
# shape: (batch_size, num_tags, nbest)
score = torch.where(mask[i].unsqueeze(-1).unsqueeze(-1), next_score, score)
indices = torch.where(mask[i].unsqueeze(-1).unsqueeze(-1), indices, oor_idx)
history_idx[i - 1] = indices
# End transition score shape: (batch_size, num_tags, nbest)
end_score = score + self.end_transitions.unsqueeze(-1)
_, end_tag = end_score.view(batch_size, -1).topk(nbest, dim=1)
# shape: (batch_size,)
seq_ends = mask.long().sum(dim=0) - 1
# insert the best tag at each sequence end (last position with mask == 1)
history_idx = history_idx.transpose(1, 0).contiguous()
history_idx.scatter_(1, seq_ends.view(-1, 1, 1, 1).expand(-1, 1, self.num_tags, nbest),
end_tag.view(-1, 1, 1, nbest).expand(-1, 1, self.num_tags, nbest))
history_idx = history_idx.transpose(1, 0).contiguous()
# The most probable path for each sequence
best_tags_arr = torch.zeros((seq_length, batch_size, nbest),
dtype=torch.long, device=device)
best_tags = torch.arange(nbest, dtype=torch.long, device=device) \
.view(1, -1).expand(batch_size, -1)
for idx in range(seq_length - 1, -1, -1):
best_tags = torch.gather(history_idx[idx].view(batch_size, -1), 1, best_tags)
best_tags_arr[idx] = best_tags.data.view(batch_size, -1) // nbest
return torch.where(mask.unsqueeze(-1), best_tags_arr, oor_tag).permute(2, 1, 0)
|