# -*- coding: utf-8 -*- """ @author:XuMing(xuming624@qq.com) @description: Re-train by TWMAN """ import hashlib import os import ssl import gradio as gr import torch from loguru import logger ssl._create_default_https_context = ssl._create_unverified_context import nltk # 檢查是否已下載資源,若未下載則進行下載 nltk_data_path = os.path.expanduser('~/nltk_data') if not os.path.exists(os.path.join(nltk_data_path, 'corpora/cmudict.zip')): nltk.download('cmudict', download_dir=nltk_data_path) if not os.path.exists(os.path.join(nltk_data_path, 'taggers/averaged_perceptron_tagger.zip')): nltk.download('averaged_perceptron_tagger', download_dir=nltk_data_path) from parrots import TextToSpeech # 設定裝置與模式 device = "cuda" if torch.cuda.is_available() else "cpu" logger.info(f"device: {device}") half = True if device == "cuda" else False # 初始化語音合成模型 m = TextToSpeech(speaker_model_path="DeepLearning101/GPT-SoVITS_TWMAN", speaker_name="TWMAN", device=device, half=half) # 用於檢查和生成語音的音訊檔案 def get_text_hash(text: str): return hashlib.md5(text.encode('utf-8')).hexdigest() def do_tts_wav_predict(text: str, output_path: str = None): if output_path is None: output_path = f"output_audio_{get_text_hash(text)}.wav" if not os.path.exists(output_path): m.predict(text, text_language="auto", output_path=output_path) return output_path # 建立 Gradio WebUI with gr.Blocks(title="TTS WebUI") as app: gr.Markdown(""" # 線上語音合成 (TWMAN) #### 請嚴格遵守法規,發布二創作品請標註本專案作者及連結,並標註生成工具 GPT-SoVITS AI! ⚠️ 注意:在線生成可能較慢,建議在本地進行推理。 更多相關內容: - [語音處理技術](https://www.twman.org/AI/ASR) - [語音處理常見問題](https://blog.twman.org/2021/04/ASR.html) - [Parrots專案](https://github.com/shibing624/parrots) - [模型使用說明](https://github.com/RVC-Boss/GPT-SoVITS) """) # 設定語音合成輸入與按鈕 with gr.Group(): gr.Markdown("*請在下方輸入要進行語音合成的文字*") with gr.Row(): text = gr.Textbox(label="想語音合成的文字 (100字以内)", value="床前明月光,疑是地上霜。舉頭望明月,低頭思故鄉。", placeholder="請輸入您想要的文字", lines=3) inference_button = gr.Button("語音合成", variant="primary") output = gr.Audio(label="合成的語音") # 設定按鈕點擊事件 inference_button.click( do_tts_wav_predict, [text], [output], ) # 啟動 Gradio 應用 app.queue(max_size=10) app.launch(share=True, inbrowser=True)