mwmathis's picture
Update app.py
a4e7597
raw
history blame
4.35 kB
import os
import yaml
import numpy as np
from matplotlib import cm
import gradio as gr
import deeplabcut
import dlclibrary
import transformers
from PIL import Image
import requests
from viz_utils import save_results_as_json, draw_keypoints_on_image, draw_bbox_w_text, save_results_only_dlc
from detection_utils import predict_md, crop_animal_detections
from ui_utils import gradio_inputs_for_MD_DLC, gradio_outputs_for_MD_DLC, gradio_description_and_examples
from deeplabcut.utils import auxiliaryfunctions
from dlclibrary.dlcmodelzoo.modelzoo_download import (
download_huggingface_model,
MODELOPTIONS,
)
# TESTING (passes) download the SuperAnimal models:
#model = 'superanimal_topviewmouse'
#train_dir = 'DLC_models/sa-tvm'
#download_huggingface_model(model, train_dir)
# grab demo data cooco cat:
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
# megadetector and dlc model look up
MD_models_dict = {'md_v5a': "MD_models/md_v5a.0.0.pt", #
'md_v5b': "MD_models/md_v5b.0.0.pt"}
# DLC models target dirs
DLC_models_dict = {'superanimal_topviewmouse': "DLC_models/sa-tvm",
'superanimal_quadreped': "DLC_models/sa-q",
'full_human': "DLC_models/DLC_human_dancing/"}
#####################################################
def predict_pipeline(img_input,
mega_model_input,
dlc_model_input_str,
flag_dlc_only,
flag_show_str_labels,
bbox_likelihood_th,
kpts_likelihood_th,
font_style,
font_size,
keypt_color,
marker_size,
):
if not flag_dlc_only:
############################################################
# ### Run Megadetector
md_results = predict_md(img_input,
MD_models_dict[mega_model_input], #mega_model_input,
size=640) #Image.fromarray(results.imgs[0])
################################################################
# Obtain animal crops for bboxes with confidence above th
list_crops = crop_animal_detections(img_input,
md_results,
bbox_likelihood_th)
############################################################
## Get DLC model and label map
# If model is found: do not download (previous execution is likely within same day)
# TODO: can we ask the user whether to reload dlc model if a directory is found?
if os.path.isdir(DLC_models_dict[dlc_model_input_str]) and \
len(os.listdir(DLC_models_dict[dlc_model_input_str])) > 0:
path_to_DLCmodel = DLC_models_dict[dlc_model_input_str]
else:
path_to_DLCmodel = download_huggingface_model(dlc_model_input_str,
DLC_models_dict[dlc_model_input_str])
# extract map label ids to strings
pose_cfg_path = os.path.join(DLC_models_dict[dlc_model_input_str],
'pose_cfg.yaml')
with open(pose_cfg_path, "r") as stream:
pose_cfg_dict = yaml.safe_load(stream)
map_label_id_to_str = dict([(k,v) for k,v in zip([el[0] for el in pose_cfg_dict['all_joints']], # pose_cfg_dict['all_joints'] is a list of one-element lists,
pose_cfg_dict['all_joints_names'])])
#########################################################
# Define user interface and launch
inputs = gradio_inputs_for_MD_DLC(list(MD_models_dict.keys()),
list(DLC_models_dict.keys()))
outputs = gradio_outputs_for_MD_DLC()
[gr_title,
gr_description,
examples] = gradio_description_and_examples()
# launch
demo = gr.Interface(predict_pipeline,
inputs=inputs,
outputs=outputs,
title=gr_title,
description=gr_description,
examples=examples,
theme="huggingface")
demo.launch(enable_queue=True, share=True)