import os import utils import streamlit as st import geopandas as gpd from streamlit_folium import st_folium, folium_static from authentication import greeting, check_password import folium from senHub import SenHub from datetime import datetime from sentinelhub import SHConfig, MimeType import requests import process import joblib from zipfile import ZipFile import matplotlib.pyplot as plt from plotly.subplots import make_subplots import plotly.graph_objects as go import pydeck as pdk import pandas as pd import plotly.express as px def check_authentication(): if not check_password(): st.stop() config = SHConfig() config.instance_id = '6c220beb-90c4-4131-b658-10cddd8d97b9' config.sh_client_id = '17e7c154-7f2d-4139-b1af-cef762385079' config.sh_client_secret = 'KvbQMKZB85ZWEgWuxqiWIVEvTAQEfoF9' def select_field(gdf): st.markdown(""" """, unsafe_allow_html=True) names = gdf['name'].tolist() names.append("Select Field") field_name = st.selectbox("Select Field", options=names, key="field_name_monitor", help="Select the field to edit", index=len(names)-1) return field_name def calculate_bbox(df, field): bbox = df.loc[df['name'] == field].bounds r = bbox.iloc[0] return [r.minx, r.miny, r.maxx, r.maxy] def get_available_dates_for_field(df, field, year, start_date='', end_date=''): bbox = calculate_bbox(df, field) token = SenHub(config).token headers = utils.get_bearer_token_headers(token) if start_date == '' or end_date == '': start_date = f'{year}-01-01' end_date = f'{year}-12-31' data = f'{{ "collections": [ "sentinel-2-l2a" ], "datetime": "{start_date}T00:00:00Z/{end_date}T23:59:59Z", "bbox": {bbox}, "limit": 100, "distinct": "date" }}' response = requests.post('https://services.sentinel-hub.com/api/v1/catalog/search', headers=headers, data=data) try: features = response.json()['features'] except: print(response.json()) features = [] return features @st.cache_data def get_and_cache_available_dates(_df, field, year, start_date, end_date): dates = get_available_dates_for_field(_df, field, year, start_date, end_date) print(f'Caching Dates for {field}') return dates def get_cuarted_df_for_field(df, field, date, metric, clientName): curated_date_path = utils.get_curated_location_img_path(clientName, metric, date, field) if curated_date_path is not None: curated_df = gpd.read_file(curated_date_path) else: process.Download_image_in_given_date(clientName, metric, df, field, date) process.mask_downladed_image(clientName, metric, df, field, date) process.convert_maske_image_to_geodataframe(clientName, metric, df, field, date, df.crs) curated_date_path = utils.get_curated_location_img_path(clientName, metric, date, field) curated_df = gpd.read_file(curated_date_path) return curated_df def track(metric, field_name, src_df, client_name): dates = [] date = -1 if 'dates' not in st.session_state: st.session_state['dates'] = dates else: dates = st.session_state['dates'] if 'date' not in st.session_state: st.session_state['date'] = date else: date = st.session_state['date'] if True: start_date = '2024-01-01' today = datetime.today() end_date = today.strftime('%Y-%m-%d') year = '2024' dates = get_and_cache_available_dates(src_df, field_name, year, start_date, end_date) # Add None to the end of the list to be used as a default value #sort the dates from earliest to today dates = sorted(dates) #Add the dates to the session state st.session_state['dates'] = dates # Display the dropdown menu if len(dates) > 0: st.markdown(""" """, unsafe_allow_html=True) date = st.selectbox('Select Observation Date: ', dates, index=len(dates)-1, key=f'Select Date Dropdown Menu - {metric}') if date != -1: st.write('You selected:', date) #Add the date to the session state st.session_state['date'] = date else: st.write('Please Select A Date') else: st.info('No dates available for the selected field and dates range, select a different range or click the button to fetch the dates again') st.markdown('---') st.header('Show Field Data') # If a field and a date are selected, display the field data if date != -1: # Get the field data at the selected date with st.spinner('Loading Field Data...'): # Get the metric data and cloud cover data for the selected field and date metric_data = get_cuarted_df_for_field(src_df, field_name, date, metric, client_name) cloud_cover_data = get_cuarted_df_for_field(src_df, field_name, date, 'CLP', client_name) #Merge the metric and cloud cover data on the geometry column field_data = metric_data.merge(cloud_cover_data, on='geometry') # Display the field data st.write(f'Field Data for {field_name} (Field ID: {field_name}) on {date}') st.write(field_data.head(2)) #Get Avarage Cloud Cover avg_clp = field_data[f'CLP_{date}'].mean() *100 # If the avarage cloud cover is greater than 80%, display a warning message if avg_clp > 80: st.warning(f'⚠️ The Avarage Cloud Cover is {avg_clp}%') st.info('Please Select A Different Date') ## Generate the field data Map ## #Title, Colormap and Legend title = f'{metric} for selected field {field_name} (Field ID: {field_name}) in {date}' cmap = 'RdYlGn' # Create a map of the field data # field_data_map = field_data.explore( # column=f'{metric}_{date}', # cmap=cmap, # legend=True, # vmin=0, # vmax=1, # marker_type='circle', marker_kwds={'radius':5.3, 'fill':True}) # Add Google Satellite as a base map # google_map = utils.basemaps['Google Satellite'] # google_map.add_to(field_data_map) # # Display the map # st_folium(field_data_map, width = 725, key=f'Field Data Map - {metric}') df = field_data.copy() df['latitude'] = df['geometry'].y df['longitude'] = df['geometry'].x # Create a scatter plot fig = px.scatter_mapbox( df, lat='latitude', lon='longitude', color=f'{metric}_{date}', color_continuous_scale='RdYlGn', range_color=(0, 1), size_max=15, zoom=13, ) # Add the base map fig.update_layout(mapbox_style="open-street-map") st.plotly_chart(fig) #Dwonload Links # If the field data is not empty, display the download links if len(field_data) > 0: # Create two columns for the download links download_as_shp_col, download_as_tiff_col = st.columns(2) # Create a shapefile of the field data and add a download link with download_as_shp_col: #Set the shapefile name and path based on the field id, metric and date extension = 'shp' shapefilename = f"{field_name}_{metric}_{date}.{extension}" path = f'./shapefiles/{field_name}/{metric}/{extension}' # Create the target directory if it doesn't exist os.makedirs(path, exist_ok=True) # Save the field data as a shapefile field_data.to_file(f'{path}/{shapefilename}') # Create a zip file of the shapefile files = [] for i in os.listdir(path): if os.path.isfile(os.path.join(path,i)): if i[0:len(shapefilename)] == shapefilename: files.append(os.path.join(path,i)) zipFileName = f'{path}/{field_name}_{metric}_{date}.zip' zipObj = ZipFile(zipFileName, 'w') for file in files: zipObj.write(file) zipObj.close() # Add a download link for the zip file with open(zipFileName, 'rb') as f: st.download_button('Download as ShapeFile', f,file_name=zipFileName) # Get the tiff file path and create a download link with download_as_tiff_col: #get the tiff file path tiff_path = utils.get_masked_location_img_path(client_name, metric, date, field_name) # Add a download link for the tiff file donwnload_filename = f'{metric}_{field_name}_{date}.tiff' with open(tiff_path, 'rb') as f: st.download_button('Download as Tiff File', f,file_name=donwnload_filename) else: st.info('Please Select A Field and A Date') def monitor_fields(): current_user = greeting("Let's take a look how these fields are doing") if os.path.exists(f"fields_{current_user}.parquet"): gdf = gpd.read_parquet(f"fields_{current_user}.parquet") else: st.info("No Fields Added Yet!") return with st.expander("Existing Fields List", expanded=False): st.write(gdf) field_name = select_field(gdf) if field_name == "Select Field": st.info("No Field Selected Yet!") else: with st.expander("Metrics Explanation", expanded=False): st.write("NDVI: Normalized Difference Vegetation Index, Mainly used to monitor the health of vegetation") st.write("LAI: Leaf Area Index, Mainly used to monitor the productivity of vegetation") st.write("CAB: Chlorophyll Absorption in the Blue band, Mainly used to monitor the chlorophyll content in vegetation") # st.write("NDMI: Normalized Difference Moisture Index, Mainly used to monitor the moisture content in vegetation") st.success("More metrics and analysis features will be added soon") metric = st.radio("Select Metric to Monitor", ["NDVI", "LAI", "CAB"], key="metric", index=0, help="Select the metric to monitor") st.write(f"Monitoring {metric} for {field_name}") track(metric, field_name, gdf, current_user) if __name__ == '__main__': check_authentication() monitor_fields()