Field-Monitoring / pag /monitor.py
A-O98's picture
first commit
2cdce84
raw
history blame
26.7 kB
import os
import utils
import streamlit as st
import geopandas as gpd
from streamlit_folium import st_folium, folium_static
from authentication import greeting, check_password
import folium
from senHub import SenHub
from datetime import datetime
from sentinelhub import SHConfig, MimeType
import requests
import process
import joblib
from zipfile import ZipFile
import matplotlib.pyplot as plt
from plotly.subplots import make_subplots
import plotly.graph_objects as go
def check_authentication():
if not check_password():
st.stop()
config = SHConfig()
config.instance_id = '6c220beb-90c4-4131-b658-10cddd8d97b9'
config.sh_client_id = '17e7c154-7f2d-4139-b1af-cef762385079'
config.sh_client_secret = 'KvbQMKZB85ZWEgWuxqiWIVEvTAQEfoF9'
def select_field(gdf):
names = gdf['name'].tolist()
names.append("Select Field")
field_name = st.selectbox("Select Field", options=names, key="field_name_monitor", help="Select the field to edit", index=len(names)-1)
return field_name
def calculate_bbox(df, field):
bbox = df.loc[df['name'] == field].bounds
r = bbox.iloc[0]
return [r.minx, r.miny, r.maxx, r.maxy]
def get_available_dates_for_field(df, field, year, start_date='', end_date=''):
bbox = calculate_bbox(df, field)
token = SenHub(config).token
headers = utils.get_bearer_token_headers(token)
if start_date == '' or end_date == '':
start_date = f'{year}-01-01'
end_date = f'{year}-12-31'
data = f'{{ "collections": [ "sentinel-2-l2a" ], "datetime": "{start_date}T00:00:00Z/{end_date}T23:59:59Z", "bbox": {bbox}, "limit": 100, "distinct": "date" }}'
response = requests.post('https://services.sentinel-hub.com/api/v1/catalog/search', headers=headers, data=data)
try:
features = response.json()['features']
except:
print(response.json())
features = []
return features
@st.cache_data
def get_and_cache_available_dates(_df, field, year, start_date, end_date):
dates = get_available_dates_for_field(_df, field, year, start_date, end_date)
print(f'Caching Dates for {field}')
return dates
def get_cuarted_df_for_field(df, field, date, metric, clientName):
curated_date_path = utils.get_curated_location_img_path(clientName, metric, date, field)
if curated_date_path is not None:
curated_df = gpd.read_file(curated_date_path)
else:
process.Download_image_in_given_date(clientName, metric, df, field, date)
process.mask_downladed_image(clientName, metric, df, field, date)
process.convert_maske_image_to_geodataframe(clientName, metric, df, field, date, df.crs)
curated_date_path = utils.get_curated_location_img_path(clientName, metric, date, field)
curated_df = gpd.read_file(curated_date_path)
return curated_df
def get_cuarted_df_for_field(df, field, date, metric, clientName):
curated_date_path = utils.get_curated_location_img_path(clientName, metric, date, field)
if curated_date_path is not None:
curated_df = gpd.read_file(curated_date_path)
else:
process.Download_image_in_given_date(clientName, metric, df, field, date)
process.mask_downladed_image(clientName, metric, df, field, date)
process.convert_maske_image_to_geodataframe(clientName, metric, df, field, date, df.crs)
curated_date_path = utils.get_curated_location_img_path(clientName, metric, date, field)
curated_df = gpd.read_file(curated_date_path)
return curated_df
def track(metric, field_name, src_df, client_name):
dates = []
date = -1
if 'dates' not in st.session_state:
st.session_state['dates'] = dates
else:
dates = st.session_state['dates']
if 'date' not in st.session_state:
st.session_state['date'] = date
else:
date = st.session_state['date']
# Give the user the option to select year, start date and end date
# with st.expander('Select Year, Start Date and End Date'):
# # Get the year
# years = [f'20{i}' for i in range(22, 25)]
# year = st.selectbox('Select Year: ', years, index=len(years)-2, key=f'Select Year Dropdown Menu - {metric}')
# # Set the min, max and default values for start and end dates
# min_val = f'{year}-01-01'
# max_val = f'{year}-12-31'
# default_val = f'{year}-11-01'
# min_val = datetime.strptime(min_val, '%Y-%m-%d')
# max_val = datetime.strptime(max_val, '%Y-%m-%d')
# default_val = datetime.strptime(default_val, '%Y-%m-%d')
# # Get the start and end dates
# start_date = st.date_input('Start Date', value=default_val, min_value=min_val, max_value=max_val, key=f'Start Date - {metric}')
# end_date = st.date_input('End Date', value=max_val, min_value=min_val, max_value=max_val, key=f'End Date - {metric}')
# Get the dates with available data for that field when the user clicks the button
# get_dates_button = st.button(f'Get Dates for Field {field_name} (Field ID: {field_name}) in {year} (from {start_date} to {end_date})',
# key=f'Get Dates Button - {metric}',
# help='Click to get the dates with available data for the selected field',
# use_container_width=True, type='primary')
# if get_dates_button:
if True:
start_date = '2024-01-01'
today = datetime.today()
end_date = today.strftime('%Y-%m-%d')
year = '2024'
dates = get_and_cache_available_dates(src_df, field_name, year, start_date, end_date)
# Add None to the end of the list to be used as a default value
# dates.append(-1)
#sort the dates from earliest to today
dates = sorted(dates)
#Add the dates to the session state
st.session_state['dates'] = dates
# Display the dropdown menu
if len(dates) > 0:
date = st.selectbox('Select Observation Date: ', dates, index=len(dates)-1, key=f'Select Date Dropdown Menu - {metric}')
if date != -1:
st.write('You selected:', date)
#Add the date to the session state
st.session_state['date'] = date
else:
st.write('Please Select A Date')
else:
st.info('No dates available for the selected field and dates range, select a different range or click the button to fetch the dates again')
st.markdown('---')
st.header('Show Field Data')
# If a field and a date are selected, display the field data
if date != -1:
# Get the field data at the selected date
with st.spinner('Loading Field Data...'):
# Get the metric data and cloud cover data for the selected field and date
metric_data = get_cuarted_df_for_field(src_df, field_name, date, metric, client_name)
cloud_cover_data = get_cuarted_df_for_field(src_df, field_name, date, 'CLP', client_name)
#Merge the metric and cloud cover data on the geometry column
field_data = metric_data.merge(cloud_cover_data, on='geometry')
# Display the field data
st.write(f'Field Data for {field_name} (Field ID: {field_name}) on {date}')
st.write(field_data.head(2))
#Get Avarage Cloud Cover
avg_clp = field_data[f'CLP_{date}'].mean() *100
# If the avarage cloud cover is greater than 80%, display a warning message
if avg_clp > 80:
st.warning(f'⚠️ The Avarage Cloud Cover is {avg_clp}%')
st.info('Please Select A Different Date')
## Generate the field data Map ##
#Title, Colormap and Legend
title = f'{metric} for selected field {field_name} (Field ID: {field_name}) in {date}'
cmap = 'RdYlGn'
# Create a map of the field data
field_data_map = field_data.explore(
column=f'{metric}_{date}',
cmap=cmap,
legend=True,
vmin=0,
vmax=1,
marker_type='circle', marker_kwds={'radius':5.3, 'fill':True})
# Add Google Satellite as a base map
google_map = utils.basemaps['Google Satellite']
google_map.add_to(field_data_map)
# Display the map
st_folium(field_data_map, width = 725, key=f'Field Data Map - {metric}')
#Dwonload Links
# If the field data is not empty, display the download links
if len(field_data) > 0:
# Create two columns for the download links
download_as_shp_col, download_as_tiff_col = st.columns(2)
# Create a shapefile of the field data and add a download link
with download_as_shp_col:
#Set the shapefile name and path based on the field id, metric and date
extension = 'shp'
shapefilename = f"{field_name}_{metric}_{date}.{extension}"
path = f'./shapefiles/{field_name}/{metric}/{extension}'
# Create the target directory if it doesn't exist
os.makedirs(path, exist_ok=True)
# Save the field data as a shapefile
field_data.to_file(f'{path}/{shapefilename}')
# Create a zip file of the shapefile
files = []
for i in os.listdir(path):
if os.path.isfile(os.path.join(path,i)):
if i[0:len(shapefilename)] == shapefilename:
files.append(os.path.join(path,i))
zipFileName = f'{path}/{field_name}_{metric}_{date}.zip'
zipObj = ZipFile(zipFileName, 'w')
for file in files:
zipObj.write(file)
zipObj.close()
# Add a download link for the zip file
with open(zipFileName, 'rb') as f:
st.download_button('Download as ShapeFile', f,file_name=zipFileName)
# Get the tiff file path and create a download link
with download_as_tiff_col:
#get the tiff file path
tiff_path = utils.get_masked_location_img_path(client_name, metric, date, field_name)
# Add a download link for the tiff file
donwnload_filename = f'{metric}_{field_name}_{date}.tiff'
with open(tiff_path, 'rb') as f:
st.download_button('Download as Tiff File', f,file_name=donwnload_filename)
else:
st.info('Please Select A Field and A Date')
# st.markdown('---')
# st.header('Show Historic Averages')
# #Let the user select the year, start date and end date
# with st.expander('Select Year, Start Date and End Date'):
# # Get the year
# years = [f'20{i}' for i in range(22, 25)]
# year = st.selectbox('Select Year: ', years, index=len(years)-2, key=f'Select Year Dropdown Menu - {metric}- Historic Averages')
# # Set the start and end dates to the first and last dates of the year
# start_date = f'{year}-01-01'
# end_date = f'{year}-12-31'
# # Get the dates for historic averages
# historic_avarages_dates_for_field = get_and_cache_available_dates(src_df, field_name, year, start_date, end_date)
# # Convert the dates to datetime objects and sort them ascendingly then convert them back to strings
# historic_avarages_dates_for_field = [datetime.strptime(date, '%Y-%m-%d') for date in historic_avarages_dates_for_field]
# historic_avarages_dates_for_field.sort()
# historic_avarages_dates_for_field = [datetime.strftime(date, '%Y-%m-%d') for date in historic_avarages_dates_for_field]
# # Get the number of dates
# num_historic_dates = len(historic_avarages_dates_for_field)
# st.write(f' Found {num_historic_dates} dates for field {field_name} in {year} (from {start_date} to {end_date})')
# # Display the historic averages when the user clicks the button
# display_historic_avgs_button = st.button(f'Display Historic Averages for Field {field_name} (Field ID: {field_name}) in {year} (from {start_date} to {end_date})',
# key=f'Display Historic Averages Button - {metric}',
# help='Click to display the historic averages for the selected field',
# use_container_width=True, type='primary')
# # If the button is clicked, display the historic averages
# if display_historic_avgs_button:
# #Initlize the historic averages cache dir and file path
# historic_avarages_cache_dir = './historic_avarages_cache'
# historic_avarages_cache_path = f'{historic_avarages_cache_dir}/historic_avarages_cache.joblib'
# historic_avarages_cache_clp_path = f'{historic_avarages_cache_dir}/historic_avarages_cache_clp.joblib'
# # Load the historic averages cache if it exists, else create it
# if os.path.exists(historic_avarages_cache_path):
# historic_avarages_cache = joblib.load(historic_avarages_cache_path)
# else:
# os.makedirs(historic_avarages_cache_dir, exist_ok=True)
# joblib.dump({}, historic_avarages_cache_path)
# historic_avarages_cache = joblib.load(historic_avarages_cache_path)
# if os.path.exists(historic_avarages_cache_clp_path):
# historic_avarages_cache_clp = joblib.load(historic_avarages_cache_clp_path)
# else:
# os.makedirs(historic_avarages_cache_dir, exist_ok=True)
# joblib.dump({}, historic_avarages_cache_clp_path)
# historic_avarages_cache_clp = joblib.load(historic_avarages_cache_clp_path)
# found_in_cache = False
# if client_name not in historic_avarages_cache:
# historic_avarages_cache[client_name] = {}
# if metric not in historic_avarages_cache[client_name]:
# historic_avarages_cache[client_name][metric] = {}
# if field_name not in historic_avarages_cache[client_name][metric]:
# historic_avarages_cache[client_name][metric][field_name] = {}
# if year not in historic_avarages_cache[client_name][metric][field_name]:
# historic_avarages_cache[client_name][metric][field_name][year] = {}
# if len(historic_avarages_cache[client_name][metric][field_name][year]) > 0:
# found_in_cache = True
# #Check if the field and year are in the cache_clp for the current metric and client
# found_in_cache_clp = False
# if client_name not in historic_avarages_cache_clp:
# historic_avarages_cache_clp[client_name] = {}
# if 'CLP' not in historic_avarages_cache_clp[client_name]:
# historic_avarages_cache_clp[client_name]['CLP'] = {}
# if field_name not in historic_avarages_cache_clp[client_name]['CLP']:
# historic_avarages_cache_clp[client_name]['CLP'][field_name] = {}
# if year not in historic_avarages_cache_clp[client_name]['CLP'][field_name]:
# historic_avarages_cache_clp[client_name]['CLP'][field_name][year] = {}
# if len(historic_avarages_cache_clp[client_name]['CLP'][field_name][year]) > 0:
# found_in_cache_clp = True
# # If Found in cache, get the historic averages from the cache
# if found_in_cache and found_in_cache_clp:
# st.info('Found Historic Averages in Cache')
# historic_avarages = historic_avarages_cache[client_name][metric][field_name][year]['historic_avarages']
# historic_avarages_dates = historic_avarages_cache[client_name][metric][field_name][year]['historic_avarages_dates']
# historic_avarages_clp = historic_avarages_cache_clp[client_name]['CLP'][field_name][year]['historic_avarages_clp']
# # Else, calculate the historic averages and add them to the cache
# else:
# st.info('Calculating Historic Averages...')
# #Empty lists for the historic averages , dates and cloud cover
# historic_avarages = []
# historic_avarages_dates = []
# historic_avarages_clp = []
# # Get the historic averages
# dates_for_field_bar = st.progress(0)
# with st.spinner('Calculating Historic Averages...'):
# with st.empty():
# for i in range(num_historic_dates):
# # Get the historic average for the current date
# current_date = historic_avarages_dates_for_field[i]
# current_df = get_cuarted_df_for_field(src_df, field_name, current_date, metric, client_name)
# current_df_clp = get_cuarted_df_for_field(src_df, field_name, current_date, 'CLP', client_name)
# current_avg = current_df[f'{metric}_{current_date}'].mean()
# current_avg_clp = current_df_clp[f'CLP_{current_date}'].mean()
# # Add the historic average and date to the lists
# historic_avarages.append(current_avg)
# historic_avarages_dates.append(current_date)
# historic_avarages_clp.append(current_avg_clp)
# # Update the progress bar
# dates_for_field_bar.progress((i + 1)/(num_historic_dates))
# # Create a plot of the historic averages with the cloud cover as dashed line and dates as x axis (rotated 90 degrees when needed)
# fig, ax = plt.subplots(figsize=(5, 3))
# # Set the x axis ticks and labels
# x = historic_avarages_dates
# x_ticks = [i for i in range(len(x))]
# ax.set_xticks(x_ticks)
# #Set rotation to 90 degrees if the number of dates is greater than 10
# rot = 0 if len(x) < 10 else 90
# ax.set_xticklabels(x, rotation=rot)
# # Set the y axis ticks and labels
# y1 = historic_avarages
# y2 = historic_avarages_clp
# y_ticks = [i/10 for i in range(11)]
# ax.set_yticks(y_ticks)
# ax.set_yticklabels(y_ticks)
# # Plot the historic averages and cloud cover
# ax.plot(x_ticks, y1, label=f'{metric} Historic Averages')
# ax.plot(x_ticks, y2, '--', label='Cloud Cover')
# ax.legend()
# # Set the title and axis labels
# ax.set_title(f'{metric} Historic Averages for {field_name} (Field ID: {field_name}) in {year}')
# ax.set_xlabel('Date')
# ax.set_ylabel(f'{metric} Historic Averages')
# # Display the plot
# st.pyplot(fig, use_container_width=True)
# # Add the historic averages to the cache
# historic_avarages_cache[client_name][metric][field_name][year]['historic_avarages'] = historic_avarages
# historic_avarages_cache[client_name][metric][field_name][year]['historic_avarages_dates'] = historic_avarages_dates
# historic_avarages_cache_clp[client_name]['CLP'][field_name][year]['historic_avarages_clp'] = historic_avarages_clp
# # Save the cache
# joblib.dump(historic_avarages_cache, historic_avarages_cache_path)
# joblib.dump(historic_avarages_cache_clp, historic_avarages_cache_clp_path)
# # Tell the user that the historic averages are saved in the cache
# st.info('Historic Averages Saved in Cache')
# st.write(f'Cache Path: {historic_avarages_cache_path}')
# st.write(f'Cache CLP Path: {historic_avarages_cache_clp_path}')
# # Display the historic averages in nice plotly plot
# fig = make_subplots(specs=[[{"secondary_y": True}]])
# # Add the historic averages to the plot
# fig.add_trace(
# go.Scatter(x=historic_avarages_dates, y=historic_avarages, name=f'{metric} Historic Averages'),
# secondary_y=False,
# )
# # Add the cloud cover to the plot
# fig.add_trace(
# go.Scatter(x=historic_avarages_dates, y=historic_avarages_clp, name='Cloud Cover'),
# secondary_y=True,
# )
# # Set the title and axis labels
# fig.update_layout(title_text=f'{metric} Historic Averages for {field_name} (Field ID: {field_name}) in {year}')
# fig.update_xaxes(title_text='Date')
# fig.update_yaxes(title_text=f'{metric} Historic Averages', secondary_y=False)
# fig.update_yaxes(title_text='Cloud Cover', secondary_y=True)
# # Display the plot
# st.plotly_chart(fig)
# st.markdown('---')
# st.header('Show Historic GIF')
# #Let the user select the year, start date and end date of the GIF
# with st.expander('Select Year, Start Date and End Date of the GIF'):
# # Get the year
# years = [f'20{i}' for i in range(16, 23)]
# year = st.selectbox('Select Year: ', years, index=len(years)-2, key=f'Select Year Dropdown Menu - {metric}- Historic Averages GIF')
# # Set the start and end dates to the first and last dates of the year
# start_date = f'{year}-01-01'
# end_date = f'{year}-12-31'
# # Get the dates for historic GIF
# historic_avarages_dates_for_field = get_and_cache_available_dates(src_df, field_name, year, start_date, end_date)
# # Convert the dates to datetime objects and sort them ascendingly then convert them back to strings
# historic_avarages_dates_for_field = [datetime.strptime(date, '%Y-%m-%d') for date in historic_avarages_dates_for_field]
# historic_avarages_dates_for_field.sort()
# historic_avarages_dates_for_field = [datetime.strftime(date, '%Y-%m-%d') for date in historic_avarages_dates_for_field]
# # Get the number of dates
# num_historic_dates = len(historic_avarages_dates_for_field)
# st.write(f' Found {num_historic_dates} dates for field {field_name} in {year} (from {start_date} to {end_date})')
# # Display the historic GIF when the user clicks the button
# display_historic_GIF_button = st.button(f'Display Historic GIF for Field {field_name} (Field ID: {field_name}) in {year} (from {start_date} to {end_date})',
# key=f'Display Historic GIF Button - {metric}',
# help='Click to display the historic GIF for the selected field',
# use_container_width=True, type='primary')
# # If the button is clicked, display the historic GIF
# if display_historic_GIF_button:
# #Initlize the historic GIF imgs and dates
# st.info('Generating Historic GIF...')
# historic_imgs = []
# historic_imgs_dates = []
# # Gen the historic GIF
# dates_for_field_bar = st.progress(0)
# with st.spinner('Generating Historic GIF...'):
# with st.empty():
# for i in range(num_historic_dates):
# current_date = historic_avarages_dates_for_field[i]
# current_df = get_cuarted_df_for_field(src_df, field_name, current_date, metric, client_name)
# historic_imgs.append(current_df)
# historic_imgs_dates.append(current_date)
# dates_for_field_bar.progress((i + 1)/(num_historic_dates))
# # Create a fig of the historic Img
# fig, ax = plt.subplots(figsize=(10, 5))
# # Get the current img
# current_df_lat_lon = utils.add_lat_lon_to_gdf_from_geometry(current_df)
# current_img = utils.gdf_column_to_one_band_array(current_df_lat_lon, f'{metric}_{current_date}')
# # Plot the historic Img
# title = f'{metric} for selected field {field_name} (Field ID: {field_name}) in {current_date}'
# ax.imshow(current_img)
# ax.set_title(title)
# # Display the plot
# st.pyplot(fig)
# # Create the historic GIF
# historic_GIF_name = f'{metric}_{field_name}_{year}.gif'
# st.write('Creating Historic GIF...', historic_GIF_name)
def monitor_fields():
current_user = greeting("Let's take a look how these fields are doing")
if os.path.exists(f"fields_{current_user}.parquet"):
gdf = gpd.read_parquet(f"fields_{current_user}.parquet")
else:
st.info("No Fields Added Yet!")
return
# st.info("Hover over the field to show the properties or check the Existing Fields List below")
# fields_map = gdf.explore()
# sat_basemap = utils.basemaps['Google Satellite']
# sat_basemap.add_to(fields_map)
# folium.LayerControl().add_to(fields_map)
# # output = st_folium(fields_map, key="edit_map", height=300, width=600)
# folium_static(fields_map, height=300, width=600)
with st.expander("Existing Fields List", expanded=False):
st.write(gdf)
field_name = select_field(gdf)
if field_name == "Select Field":
st.info("No Field Selected Yet!")
else:
with st.expander("Metrics Explanation", expanded=False):
st.write("NDVI: Normalized Difference Vegetation Index, Mainly used to monitor the health of vegetation")
st.write("LAI: Leaf Area Index, Mainly used to monitor the productivity of vegetation")
st.write("CAB: Chlorophyll Absorption in the Blue band, Mainly used to monitor the chlorophyll content in vegetation")
# st.write("NDMI: Normalized Difference Moisture Index, Mainly used to monitor the moisture content in vegetation")
st.success("More metrics and analysis features will be added soon")
metric = st.radio("Select Metric to Monitor", ["NDVI", "LAI", "CAB"], key="metric", index=0, help="Select the metric to monitor")
st.write(f"Monitoring {metric} for {field_name}")
track(metric, field_name, gdf, current_user)
if __name__ == '__main__':
check_authentication()
monitor_fields()