File size: 24,236 Bytes
49ee313
2cdce84
 
 
 
 
 
74b951c
49ee313
2cdce84
 
 
58ded3e
dfecdcc
74b951c
 
 
 
322888c
5d461d1
74b951c
5d461d1
 
 
 
 
2cdce84
 
 
 
 
 
 
 
ab52166
 
 
74b951c
ab52166
 
 
 
 
 
2cdce84
 
5926d3f
 
 
 
 
2cdce84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfecdcc
 
 
 
 
 
 
 
 
 
 
 
74b951c
2cdce84
 
 
dfecdcc
2cdce84
74b951c
dfecdcc
 
 
74b951c
 
dfecdcc
74b951c
 
dfecdcc
2cdce84
 
74b951c
2cdce84
 
74b951c
 
 
 
 
 
 
 
 
 
 
 
 
dfecdcc
 
 
 
74b951c
dfecdcc
 
2cdce84
74b951c
2cdce84
ab52166
2cdce84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5926d3f
 
 
 
 
ab52166
2cdce84
 
ab52166
2cdce84
 
 
 
 
 
 
 
 
ab52166
2cdce84
 
 
 
 
 
74b951c
 
 
2cdce84
 
 
 
 
49ee313
 
 
 
 
 
2cdce84
 
 
 
 
 
 
 
49ee313
95c242f
 
 
 
 
 
 
 
 
 
 
 
 
49ee313
 
95c242f
 
 
 
 
ab52166
 
 
 
2cdce84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440eaa6
2cdce84
 
ab52166
49ee313
 
 
 
 
 
 
 
 
 
ab52166
49ee313
 
 
 
 
ab52166
49ee313
 
 
ab52166
74b951c
ab52166
 
 
 
 
1ffd5d5
 
 
ab52166
 
1ffd5d5
 
ab52166
3154669
1ffd5d5
 
 
 
 
 
 
 
 
 
ab52166
 
1ffd5d5
ab52166
 
 
 
 
1ffd5d5
ab52166
1ffd5d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ea15ea
ab52166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74b951c
ab52166
5d461d1
ab52166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56d64f4
 
 
 
 
 
 
 
 
 
 
 
ab52166
 
 
 
 
56d64f4
ab52166
2cdce84
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
# monitor.py
import os
import utils
import streamlit as st
import geopandas as gpd
from authentication import greeting, check_password
from senHub import SenHub
from datetime import datetime, timedelta
from sentinelhub import  SHConfig
import requests
import process
from zipfile import ZipFile
import plotly.express as px
import threading
import pandas as pd
import grpc
import pb.timesfm_pb2_grpc
import pb.timesfm_pb2
from openai import OpenAI
from dotenv import load_dotenv
import time
import dotenv


load_dotenv()


def check_authentication():
    if not check_password():
        st.stop()



config = SHConfig()
config.instance_id       = '44e79764-8b9d-43b0-a4bf-15799db2899d'
config.sh_client_id      = '4ae34b53-3f81-4ba0-9c7d-b6fb0606dac3'
config.sh_client_secret  = '3IPSSqE75fqK38vP85hxttR9PJEs5OxX'
config.sh_timesfm_IP = "34.121.141.161"
try:
    OpenAI_key = os.getenv('OPENAI_KEY')
    client = OpenAI(api_key= OpenAI_key)
except:
    OpenAI_key = "sk-"
    client = OpenAI(api_key= OpenAI_key)

def select_field(gdf):
    st.markdown("""
            <style>
            .stSelectbox > div > div {cursor: pointer;}
            </style>
            """, unsafe_allow_html=True)
    names = gdf['name'].tolist()
    names.append("Select Field")
    field_name = st.selectbox("Select Field", options=names, key="field_name_monitor", help="Select the field to edit", index=len(names)-1)
    return field_name


def calculate_bbox(df, field):
    bbox = df.loc[df['name'] == field].bounds
    r = bbox.iloc[0]
    return [r.minx, r.miny, r.maxx, r.maxy]

def get_available_dates_for_field(df, field, year, start_date='', end_date=''):
    bbox = calculate_bbox(df, field)
    token = SenHub(config).token
    headers = utils.get_bearer_token_headers(token)
    if start_date == '' or end_date == '':
        start_date = f'{year}-01-01'
        end_date = f'{year}-12-31'
    data = f'{{ "collections": [ "sentinel-2-l2a" ], "datetime": "{start_date}T00:00:00Z/{end_date}T23:59:59Z", "bbox": {bbox}, "limit": 100, "distinct": "date" }}'
    response = requests.post('https://services.sentinel-hub.com/api/v1/catalog/search', headers=headers, data=data)
    try:
        features = response.json()['features']
    except:
        print(response.json())
        features = []
    return features

@st.cache_data
def get_and_cache_available_dates(_df, field, year, start_date, end_date):
    dates = get_available_dates_for_field(_df, field, year, start_date, end_date)
    print(f'Caching Dates for {field}')
    return dates




# def get_cuarted_df_for_field(df, field, date, metric, clientName):
#     curated_date_path =  utils.get_curated_location_img_path(clientName, metric, date, field)
#     if curated_date_path is not None:
#         curated_df = gpd.read_file(curated_date_path)
#     else:
#         process.Download_image_in_given_date(clientName, metric, df, field, date)
#         process.mask_downladed_image(clientName, metric, df, field, date)
#         process.convert_maske_image_to_geodataframe(clientName, metric, df, field, date, df.crs)
#         curated_date_path =  utils.get_curated_location_img_path(clientName, metric, date, field)
#         curated_df = gpd.read_file(curated_date_path)
#     return curated_df

def get_cuarted_df_for_field(df, field, date, metric, clientName, dates=None):
    curated_date_path =  utils.get_curated_location_img_path(clientName, metric, date, field)
    if curated_date_path is not None:
        curated_df = gpd.read_file(curated_date_path)

    else:
        download_date_data(df, field, [date], metric, clientName,)
        curated_date_path =  utils.get_curated_location_img_path(clientName, metric, date, field)
        print("curr selected date processed")

        if dates:
            old_dates = [prev_date for prev_date in dates if prev_date != date]

            download_thread = threading.Thread(target=download_date_data, name="Downloader", args=(df, field, old_dates, metric, clientName))
            download_thread.start()

        curated_date_path =  utils.get_curated_location_img_path(clientName, metric, date, field)
        curated_df = gpd.read_file(curated_date_path)

    return curated_df

# def check_and_download_date_data(df, field, date, metric, clientName,):
#     curated_date_path =  utils.get_curated_location_img_path(clientName, metric, date, field)
#     if curated_date_path is not None:
#         curated_df = gpd.read_file(curated_date_path)
#     else:
#         process.Download_image_in_given_date(clientName, metric, df, field, date)
#         process.mask_downladed_image(clientName, metric, df, field, date)
#         process.convert_maske_image_to_geodataframe(clientName, metric, df, field, date, df.crs)
#         curated_date_path =  utils.get_curated_location_img_path(clientName, metric, date, field)
#         curated_df = gpd.read_file(curated_date_path)
#     return curated_df

def download_date_data(df, field, dates, metric, clientName,):
    for date in dates:
        process.Download_image_in_given_date(clientName, metric, df, field, date)
        process.mask_downladed_image(clientName, metric, df, field, date)
        process.convert_maske_image_to_geodataframe(clientName, metric, df, field, date, df.crs)
    # print(f"finished downloading prev dates data")
    return 



def track(metric, field_name, src_df, client_name):
    st.subheader(":green[Select Date and Start Monitoring]")
    dates = []
    date = -1
    if 'dates' not in st.session_state:
        st.session_state['dates'] = dates
    else:
        dates = st.session_state['dates']
    if 'date' not in st.session_state:
        st.session_state['date'] = date
    else:
        date = st.session_state['date']

    if True:
        start_date = '2024-01-01'
        today = datetime.today()
        end_date = today.strftime('%Y-%m-%d')
        year = '2024'

        dates = get_and_cache_available_dates(src_df, field_name, year, start_date, end_date)
        # Add None to the end of the list to be used as a default value
        #sort the dates from earliest to today
        dates = sorted(dates)

        #Add the dates to the session state
        st.session_state['dates'] = dates

    # Display the dropdown menu
    if len(dates) > 0:
        st.markdown("""
            <style>
            .stSelectbox > div > div {cursor: pointer;}
            </style>
            """, unsafe_allow_html=True)
        dates.append(-1)
        date = st.selectbox('Select Observation Date: ', dates, index=len(dates)-1, key=f'Select Date Dropdown Menu - {metric}')
        if date != -1:
            st.write(f'You selected: {date}')
            #Add the date to the session state
            st.session_state['date'] = date
        else:
            st.write('Please Select A Date')
    else:
        st.info('No dates available for the selected field and dates range, select a different range or click the button to fetch the dates again')


    st.markdown('---')
    st.subheader('Show Field Data')

    # If a field and a date are selected, display the field data
    if date != -1:   

        # Get the field data at the selected date
        with st.spinner('Loading Field Data...'):
            # Get the metric data and cloud cover data for the selected field and date, to enable background download set dates=dates
            metric_data = get_cuarted_df_for_field(src_df, field_name, date, metric, client_name, dates=None)
            cloud_cover_data = get_cuarted_df_for_field(src_df, field_name, date, 'CLP', client_name, dates=None)
            
            #Merge the metric and cloud cover data on the geometry column
            field_data = metric_data.merge(cloud_cover_data, on='geometry')

        # Display the field data
        avg_clp = field_data[f'CLP_{date}'].mean() *100
        avg_metric = field_data[f'{metric}_{date}'].mean() 
        st.write(f'Field Data for (Field ID: {field_name}) on {date}')
        col1,col3,col5,col2,col4 = st.columns(5)
        col1.metric(f":orange[Average {metric}]", value=f"{avg_metric :.2f}")
        col2.metric(":green[Cloud Cover]",  value=f"{avg_clp :.2f}%")

        #Get Avarage Cloud Cover

        # If the avarage cloud cover is greater than 80%, display a warning message
        if avg_clp > 80:
            st.warning(f'⚠️ The Avarage Cloud Cover is {avg_clp}%')
            st.info('Please Select A Different Date')

  

        df = field_data.copy()
        df['latitude'] = df['geometry'].y
        df['longitude'] = df['geometry'].x

        # Create a scatter plot
        fig = px.scatter_mapbox(
            df, 
            lat='latitude', 
            lon='longitude', 
            color=f'{metric}_{date}',
            color_continuous_scale='RdYlGn',
            range_color=(0, 1),
            width= 800,
            height=600,
            size_max=15,
            zoom=13,
        )

        # Add the base map
        with st.expander("Show Map", expanded=False):
            token = open("token.mapbox_token").read()
            fig.update_layout(mapbox_style="satellite", mapbox_accesstoken=token)
            st.plotly_chart(fig, use_container_width=True)

        #Dwonload Links

        # If the field data is not empty, display the download links
        if len(field_data) > 0:
            # Create two columns for the download links
            download_as_shp_col, download_as_tiff_col = st.columns(2)

            # Create a shapefile of the field data and add a download link
            with download_as_shp_col:

                #Set the shapefile name and path based on the field id, metric and date
                extension = 'shp'
                shapefilename = f"{field_name}_{metric}_{date}.{extension}"
                path = f'./shapefiles/{field_name}/{metric}/{extension}'

                # Create the target directory if it doesn't exist
                os.makedirs(path, exist_ok=True)
                
                # Save the field data as a shapefile
                field_data.to_file(f'{path}/{shapefilename}')

                # Create a zip file of the shapefile
                files = []
                for i in os.listdir(path):
                    if os.path.isfile(os.path.join(path,i)):
                        if i[0:len(shapefilename)] == shapefilename:
                            files.append(os.path.join(path,i))
                zipFileName = f'{path}/{field_name}_{metric}_{date}.zip'
                zipObj = ZipFile(zipFileName, 'w')
                for file in files:
                    zipObj.write(file)
                zipObj.close()

                # Add a download link for the zip file
                with open(zipFileName, 'rb') as f:
                    st.download_button('Download as ShapeFile', f,file_name=zipFileName)

            # Get the tiff file path and create a download link
            with download_as_tiff_col:
                #get the tiff file path
                tiff_path = utils.get_masked_location_img_path(client_name, metric, date, field_name)
                # Add a download link for the tiff file
                donwnload_filename = f'{metric}_{field_name}_{date}.tiff'
                with open(tiff_path, 'rb') as f:
                    st.download_button('Download as Tiff File', f,file_name=donwnload_filename)

    else:
        st.info('Please Select A Field and A Date')
           

def monitor_fields():
    st.title(":orange[Field Monitoring]")
    row1,row2 = st.columns([1,2])
    with row1:
        current_user = greeting("Let's take a look how these fields are doing")
        if os.path.exists(f"fields_{current_user}.parquet"):
            gdf = gpd.read_parquet(f"fields_{current_user}.parquet")
            field_name = select_field(gdf)
            if field_name == "Select Field":
                st.info("No Field Selected Yet!")  
            else:
                metric = st.radio("Select Metric to Monitor", ["NDVI", "LAI", "CAB"], key="metric", index=0, help="Select the metric to monitor")
                st.write(f"Monitoring {metric} for {field_name}")
                with st.expander("Metrics Explanation", expanded=False):
                    st.write("NDVI: Normalized Difference Vegetation Index, Mainly used to monitor the health of vegetation")
                    st.write("LAI: Leaf Area Index, Mainly used to monitor the productivity of vegetation")
                    st.write("CAB: Chlorophyll Absorption in the Blue band, Mainly used to monitor the chlorophyll content in vegetation")
                    # st.write("NDMI: Normalized Difference Moisture Index, Mainly used to monitor the moisture content in vegetation")
 
        else:
            st.info("No Fields Added Yet!")
            return
    with row2:
        if field_name != "Select Field":
            track(metric, field_name, gdf, current_user)

    if field_name != "Select Field":
        st.title(":orange[Field Health Forecast]")
        st.write(f"Press the button below to predict {metric} for the next 30 weeks")
        # Reset session state if any of the required keys are missing
        required_keys = ['api_token', 'api_token_confirmed', 'valid_until']
        if any(key not in st.session_state for key in required_keys):
            st.session_state['api_token'] = ''
            st.session_state['api_token_confirmed'] = False
            st.session_state['valid_until'] = ''

        if not st.session_state['api_token_confirmed']:
            st.warning("No Valid API Token Found")
            with st.expander("Need a new API Token?", expanded=True):
                st.markdown(utils.NEW_TOKEN_INSTRUCTIONS, unsafe_allow_html=True)
            with st.expander("Token Usage history", expanded=False):
                filename = f'{current_user}_tokens.csv'
                if os.path.exists(filename):
                    token_usage = pd.read_csv(filename)
                    token_usage['is_expired'] = token_usage['valid_until'].apply(lambda x: 'Yes' if datetime.strptime(x, '%Y-%m-%d %H:%M:%S') < datetime.now() else 'No')
                    st.write(token_usage)
                else:
                    st.write("No Token Usage History Found")
            api_token = st.text_input("API Token", key="api_token_input", help="Enter the API Token From SNET")
            if st.button("submit API Token", key="confirm_api_token"):
                if utils.confirm_api_token(api_token)['valid']:
                    st.session_state['api_token'] = api_token
                    st.session_state['api_token_confirmed'] = True
                    st.session_state['valid_until'] = utils.load_token_expiration(api_token).strftime('%Y-%m-%d %H:%M:%S')
                    st.rerun()
                else:
                    st.error(f"Invalid API Token; {utils.confirm_api_token(api_token)['message']}")
        else:
            now = datetime.now()
            valid_until = datetime.strptime(st.session_state['valid_until'], '%Y-%m-%d %H:%M:%S')
            time_remaining = valid_until - now
            minutes_remaining = int(time_remaining.total_seconds() // 60)
            seconds_remaining = int(time_remaining.total_seconds() % 60)
            time_left_column, clear_token_column = st.columns([1,1])
            with time_left_column:
                st.success(f"API Token Confirmed. Token valid for {minutes_remaining} minutes and {seconds_remaining} seconds")
            with clear_token_column:
                if st.button("Clear API Token", key="clear_api_token"):
                    st.session_state['api_token'] = ''
                    st.session_state['api_token_confirmed'] = False
                    st.session_state['valid_until'] = ''
                    st.rerun()
            with st.expander("Need a new API Token?", expanded=False):
                st.markdown(utils.NEW_TOKEN_INSTRUCTIONS, unsafe_allow_html=True)
            with st.expander("Token Usage history", expanded=False):
                token_usage = utils.manage_user_tokens(current_user, st.session_state['api_token'], valid_until.strftime('%Y-%m-%d %H:%M:%S'))
                token_usage['is_expired'] = token_usage['valid_until'].apply(lambda x: 'Yes' if datetime.strptime(x, '%Y-%m-%d %H:%M:%S') < datetime.now() else 'No')
                st.write(token_usage)

        lookback_days = st.slider("Select Lookback Days", 10, 360, 30, step=10,key="lookback_days", help="Large lookback days may take longer to load")
        subcol1, subcol2, subcol3 = st.columns(3)
 
        if subcol2.button(f'Predict & Recommend', key="predict_button", disabled=not st.session_state['api_token_confirmed']):
            # start_date = '2024-01-01'
            today = datetime.today()
            end_date = today.strftime('%Y-%m-%d')
            start_date = today - timedelta(days=lookback_days)
            start_date = start_date.strftime('%Y-%m-%d')
            year = '2024'

            dates = get_and_cache_available_dates(gdf, field_name, year, start_date, end_date)
            newest_date, oldest_date = dates[0], dates[-1]
            number_of_months = (datetime.strptime(newest_date, '%Y-%m-%d') - datetime.strptime(oldest_date, '%Y-%m-%d')).days//30
            my_bar = st.progress(0, text= f"Downloading Data for the last {number_of_months+1} months ...")
            counter = 0
            downloaded_prev_metrics = []
            for index, date in enumerate(dates):
                # time.sleep(0.1)
                metric_data = get_cuarted_df_for_field(gdf, field_name, date, metric, current_user, dates = None)
                # cloud_cover_data = get_cuarted_df_for_field(gdf, field_name, date, 'CLP', current_user, dates = None)
                # field_data = metric_data.merge(cloud_cover_data, on='geometry')
                avg_metric = metric_data[f'{metric}_{date}'].mean() 
                downloaded_prev_metrics.append((date, avg_metric))
                counter = counter + 100/(len(dates))
                my_bar.progress(round(counter), text=f"Downloading Data for the last {len(dates)//6} months: {round(counter)}%")

            st.subheader('Predictions:')
            # chart_data = pd.DataFrame(
            # {
            #     "date": [metric[0] for metric in downloaded_prev_metrics],
            #     f"{metric}": [metric[1] for metric in downloaded_prev_metrics],
            # }
            # )

            # st.area_chart(chart_data, x="date", y=f"{metric}")
            channel = grpc.insecure_channel(f"{config.sh_timesfm_IP}:50051")
            print("runing client request")
            stub = pb.timesfm_pb2_grpc.PredictAgriStub(channel)
            features = stub.predict_metric(iter([pb.timesfm_pb2.prev_values(value=metric[1], date=metric[0]) for metric in downloaded_prev_metrics]))
            print("server streaming:")
            predictions = []
            for feature in features:
                predictions.append(feature.value)
            # do something with the returned output
            # print(predictions)
            future_dates = []
            # print(dates[0])
            curr_date = datetime.today()
            for pred in predictions:
                curr_date = curr_date + timedelta(days=7)
                future_dates.append(curr_date.strftime('%Y-%m-%d'))

            prev_dates = [metric[0] for metric in downloaded_prev_metrics]
            history_metric_data = [metric[1] for metric in downloaded_prev_metrics]
            future_metric_data = predictions
            interval_dates = prev_dates
            interval_dates.extend(future_dates)
            history_metric_data.extend([0 for i in range(len(predictions))])
            masked_future_metric_data = [0 for i in range(len([metric[1] for metric in downloaded_prev_metrics]))]
            masked_future_metric_data.extend(future_metric_data)
            # print(f"interval_dates:{len(interval_dates)}")
            # print(f"history_metric_data:{len(history_metric_data)}")
            # print(f"masked_future_metric_data:{len(masked_future_metric_data)}")
            # print(predictions)
        
            # print(interval_dates)
            prediction_chart_data = pd.DataFrame(
            {
                f"history_{metric}_values": history_metric_data,
                f"predicted_{metric}_values":masked_future_metric_data,
                f"date": interval_dates,
            }
            )

            # print(prediction_chart_data)
            graph_col, recommendation_col = st.columns([1,1])
            with graph_col:
                st.area_chart(prediction_chart_data, x="date", y=[f"history_{metric}_values", f"predicted_{metric}_values"])
            with recommendation_col:
                st.subheader('Recommendation:')
                with st.spinner("Generating Recommendation..."):
                    crop = gdf.loc[gdf['name'] == field_name].crop if 'crop' in gdf.columns else "Wheat"
                    

                    try:           
                        weeks = future_dates
                        gdf_loc = gdf.loc[gdf['name'] == field_name].reset_index(drop=True)
                        location = utils.get_region_from_coordinates(gdf_loc.geometry[0].centroid.y, gdf_loc.geometry[0].centroid.x)
                        prompt = f"""The Field Name is {field_name} and is located in {location}.
                        Analyze {crop} growth conditions for the next {len(weeks)} weeks starting from {weeks[0]} to {weeks[-1]} based on the Forecatsed {metric} values weekly.
                        {metric}: {predictions}

                        Provide a concise Short report:

                        1. Field Status (use format "Category: Status -  One sentence comment", (e.g. Overall Health: Low - The NDVI values consistently below 0.2, indicating weak vegetative growth.)
                        - Overall Health:
                        - Growth Stage:
                        - Pest Risk:
                        - Disease Risk:
                        - Stress Level:

                        2. Yield Forecast:
                        [look online for the expected yield for the crop in the region based {metric} values]

                        3. Recommendation:
                        [one actionable advice reasoned based on the forecasted {metric} values, season, crop, and region]

                        """
                        # prompt = f"given the {metric} values weekly for the next 30 weeks, comment if they are appropriate to grow {crop} (write one paragraph showing your conclusion): {metric} values:{predictions}"
                        response = client.chat.completions.create(
                            model="gpt-4o",
                            messages=[
                                {
                                "role": "user",
                                "content": prompt
                                }
                            ],
                            temperature=1,
                            max_tokens=256,
                            top_p=1,
                            frequency_penalty=0,
                            presence_penalty=0
                        )
                        st.markdown(response.choices[0].message.content)

                        # save the recommendation
                        recommendation = response.choices[0].message.content
                        recommendation_filename = f'{current_user}_recommendations.md'
                        with open(recommendation_filename, 'a') as f:
                            f.write(f'\n\n## {field_name} - {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}\n\n')
                            f.write(recommendation)
                            f.write('\n\n')
                        # Dwonload button for the recommendation
                        with open(recommendation_filename, 'rb') as f:
                            st.download_button('Download Recommendation', f,file_name=recommendation_filename)

                    except Exception as e:
                        st.code("Server Error: Could't generate recommendation!")
                        st.error(e)



    


if __name__ == '__main__':
    check_authentication()
    monitor_fields()