Spaces:
Sleeping
Sleeping
File size: 10,836 Bytes
2cdce84 5926d3f 2cdce84 5926d3f 2cdce84 440eaa6 2cdce84 440eaa6 2cdce84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import os
import utils
import streamlit as st
import geopandas as gpd
from streamlit_folium import st_folium, folium_static
from authentication import greeting, check_password
import folium
from senHub import SenHub
from datetime import datetime
from sentinelhub import SHConfig, MimeType
import requests
import process
import joblib
from zipfile import ZipFile
import matplotlib.pyplot as plt
from plotly.subplots import make_subplots
import plotly.graph_objects as go
def check_authentication():
if not check_password():
st.stop()
config = SHConfig()
config.instance_id = '6c220beb-90c4-4131-b658-10cddd8d97b9'
config.sh_client_id = '17e7c154-7f2d-4139-b1af-cef762385079'
config.sh_client_secret = 'KvbQMKZB85ZWEgWuxqiWIVEvTAQEfoF9'
def select_field(gdf):
st.markdown("""
<style>
.stSelectbox > div > div {cursor: pointer;}
</style>
""", unsafe_allow_html=True)
names = gdf['name'].tolist()
names.append("Select Field")
field_name = st.selectbox("Select Field", options=names, key="field_name_monitor", help="Select the field to edit", index=len(names)-1)
return field_name
def calculate_bbox(df, field):
bbox = df.loc[df['name'] == field].bounds
r = bbox.iloc[0]
return [r.minx, r.miny, r.maxx, r.maxy]
def get_available_dates_for_field(df, field, year, start_date='', end_date=''):
bbox = calculate_bbox(df, field)
token = SenHub(config).token
headers = utils.get_bearer_token_headers(token)
if start_date == '' or end_date == '':
start_date = f'{year}-01-01'
end_date = f'{year}-12-31'
data = f'{{ "collections": [ "sentinel-2-l2a" ], "datetime": "{start_date}T00:00:00Z/{end_date}T23:59:59Z", "bbox": {bbox}, "limit": 100, "distinct": "date" }}'
response = requests.post('https://services.sentinel-hub.com/api/v1/catalog/search', headers=headers, data=data)
try:
features = response.json()['features']
except:
print(response.json())
features = []
return features
@st.cache_data
def get_and_cache_available_dates(_df, field, year, start_date, end_date):
dates = get_available_dates_for_field(_df, field, year, start_date, end_date)
print(f'Caching Dates for {field}')
return dates
def get_cuarted_df_for_field(df, field, date, metric, clientName):
curated_date_path = utils.get_curated_location_img_path(clientName, metric, date, field)
if curated_date_path is not None:
curated_df = gpd.read_file(curated_date_path)
else:
process.Download_image_in_given_date(clientName, metric, df, field, date)
process.mask_downladed_image(clientName, metric, df, field, date)
process.convert_maske_image_to_geodataframe(clientName, metric, df, field, date, df.crs)
curated_date_path = utils.get_curated_location_img_path(clientName, metric, date, field)
curated_df = gpd.read_file(curated_date_path)
return curated_df
def get_cuarted_df_for_field(df, field, date, metric, clientName):
curated_date_path = utils.get_curated_location_img_path(clientName, metric, date, field)
if curated_date_path is not None:
curated_df = gpd.read_file(curated_date_path)
else:
process.Download_image_in_given_date(clientName, metric, df, field, date)
process.mask_downladed_image(clientName, metric, df, field, date)
process.convert_maske_image_to_geodataframe(clientName, metric, df, field, date, df.crs)
curated_date_path = utils.get_curated_location_img_path(clientName, metric, date, field)
curated_df = gpd.read_file(curated_date_path)
return curated_df
def track(metric, field_name, src_df, client_name):
dates = []
date = -1
if 'dates' not in st.session_state:
st.session_state['dates'] = dates
else:
dates = st.session_state['dates']
if 'date' not in st.session_state:
st.session_state['date'] = date
else:
date = st.session_state['date']
if True:
start_date = '2024-01-01'
today = datetime.today()
end_date = today.strftime('%Y-%m-%d')
year = '2024'
dates = get_and_cache_available_dates(src_df, field_name, year, start_date, end_date)
# Add None to the end of the list to be used as a default value
#sort the dates from earliest to today
dates = sorted(dates)
#Add the dates to the session state
st.session_state['dates'] = dates
# Display the dropdown menu
if len(dates) > 0:
st.markdown("""
<style>
.stSelectbox > div > div {cursor: pointer;}
</style>
""", unsafe_allow_html=True)
date = st.selectbox('Select Observation Date: ', dates, index=len(dates)-1, key=f'Select Date Dropdown Menu - {metric}')
if date != -1:
st.write('You selected:', date)
#Add the date to the session state
st.session_state['date'] = date
else:
st.write('Please Select A Date')
else:
st.info('No dates available for the selected field and dates range, select a different range or click the button to fetch the dates again')
st.markdown('---')
st.header('Show Field Data')
# If a field and a date are selected, display the field data
if date != -1:
# Get the field data at the selected date
with st.spinner('Loading Field Data...'):
# Get the metric data and cloud cover data for the selected field and date
metric_data = get_cuarted_df_for_field(src_df, field_name, date, metric, client_name)
cloud_cover_data = get_cuarted_df_for_field(src_df, field_name, date, 'CLP', client_name)
#Merge the metric and cloud cover data on the geometry column
field_data = metric_data.merge(cloud_cover_data, on='geometry')
# Display the field data
st.write(f'Field Data for {field_name} (Field ID: {field_name}) on {date}')
st.write(field_data.head(2))
#Get Avarage Cloud Cover
avg_clp = field_data[f'CLP_{date}'].mean() *100
# If the avarage cloud cover is greater than 80%, display a warning message
if avg_clp > 80:
st.warning(f'⚠️ The Avarage Cloud Cover is {avg_clp}%')
st.info('Please Select A Different Date')
## Generate the field data Map ##
#Title, Colormap and Legend
title = f'{metric} for selected field {field_name} (Field ID: {field_name}) in {date}'
cmap = 'RdYlGn'
# Create a map of the field data
field_data_map = field_data.explore(
column=f'{metric}_{date}',
cmap=cmap,
legend=True,
vmin=0,
vmax=1,
marker_type='circle', marker_kwds={'radius':5.3, 'fill':True})
# Add Google Satellite as a base map
google_map = utils.basemaps['Google Satellite']
google_map.add_to(field_data_map)
# Display the map
st_folium(field_data_map, width = 725, key=f'Field Data Map - {metric}')
#Dwonload Links
# If the field data is not empty, display the download links
if len(field_data) > 0:
# Create two columns for the download links
download_as_shp_col, download_as_tiff_col = st.columns(2)
# Create a shapefile of the field data and add a download link
with download_as_shp_col:
#Set the shapefile name and path based on the field id, metric and date
extension = 'shp'
shapefilename = f"{field_name}_{metric}_{date}.{extension}"
path = f'./shapefiles/{field_name}/{metric}/{extension}'
# Create the target directory if it doesn't exist
os.makedirs(path, exist_ok=True)
# Save the field data as a shapefile
field_data.to_file(f'{path}/{shapefilename}')
# Create a zip file of the shapefile
files = []
for i in os.listdir(path):
if os.path.isfile(os.path.join(path,i)):
if i[0:len(shapefilename)] == shapefilename:
files.append(os.path.join(path,i))
zipFileName = f'{path}/{field_name}_{metric}_{date}.zip'
zipObj = ZipFile(zipFileName, 'w')
for file in files:
zipObj.write(file)
zipObj.close()
# Add a download link for the zip file
with open(zipFileName, 'rb') as f:
st.download_button('Download as ShapeFile', f,file_name=zipFileName)
# Get the tiff file path and create a download link
with download_as_tiff_col:
#get the tiff file path
tiff_path = utils.get_masked_location_img_path(client_name, metric, date, field_name)
# Add a download link for the tiff file
donwnload_filename = f'{metric}_{field_name}_{date}.tiff'
with open(tiff_path, 'rb') as f:
st.download_button('Download as Tiff File', f,file_name=donwnload_filename)
else:
st.info('Please Select A Field and A Date')
def monitor_fields():
current_user = greeting("Let's take a look how these fields are doing")
if os.path.exists(f"fields_{current_user}.parquet"):
gdf = gpd.read_parquet(f"fields_{current_user}.parquet")
else:
st.info("No Fields Added Yet!")
return
with st.expander("Existing Fields List", expanded=False):
st.write(gdf)
field_name = select_field(gdf)
if field_name == "Select Field":
st.info("No Field Selected Yet!")
else:
with st.expander("Metrics Explanation", expanded=False):
st.write("NDVI: Normalized Difference Vegetation Index, Mainly used to monitor the health of vegetation")
st.write("LAI: Leaf Area Index, Mainly used to monitor the productivity of vegetation")
st.write("CAB: Chlorophyll Absorption in the Blue band, Mainly used to monitor the chlorophyll content in vegetation")
# st.write("NDMI: Normalized Difference Moisture Index, Mainly used to monitor the moisture content in vegetation")
st.success("More metrics and analysis features will be added soon")
metric = st.radio("Select Metric to Monitor", ["NDVI", "LAI", "CAB"], key="metric", index=0, help="Select the metric to monitor")
st.write(f"Monitoring {metric} for {field_name}")
track(metric, field_name, gdf, current_user)
if __name__ == '__main__':
check_authentication()
monitor_fields() |