File size: 26,745 Bytes
2cdce84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
import os
import utils
import streamlit as st
import geopandas as gpd
from streamlit_folium import st_folium, folium_static
from authentication import greeting, check_password
import folium
from senHub import SenHub
from datetime import datetime
from sentinelhub import  SHConfig, MimeType
import requests
import process
import joblib
from zipfile import ZipFile
import matplotlib.pyplot as plt
from plotly.subplots import make_subplots
import plotly.graph_objects as go

def check_authentication():
    if not check_password():
        st.stop()



config = SHConfig()
config.instance_id       = '6c220beb-90c4-4131-b658-10cddd8d97b9'
config.sh_client_id      = '17e7c154-7f2d-4139-b1af-cef762385079'
config.sh_client_secret  = 'KvbQMKZB85ZWEgWuxqiWIVEvTAQEfoF9'


def select_field(gdf):
    names = gdf['name'].tolist()
    names.append("Select Field")
    field_name = st.selectbox("Select Field", options=names, key="field_name_monitor", help="Select the field to edit", index=len(names)-1)
    return field_name


def calculate_bbox(df, field):
    bbox = df.loc[df['name'] == field].bounds
    r = bbox.iloc[0]
    return [r.minx, r.miny, r.maxx, r.maxy]

def get_available_dates_for_field(df, field, year, start_date='', end_date=''):
    bbox = calculate_bbox(df, field)
    token = SenHub(config).token
    headers = utils.get_bearer_token_headers(token)
    if start_date == '' or end_date == '':
        start_date = f'{year}-01-01'
        end_date = f'{year}-12-31'
    data = f'{{ "collections": [ "sentinel-2-l2a" ], "datetime": "{start_date}T00:00:00Z/{end_date}T23:59:59Z", "bbox": {bbox}, "limit": 100, "distinct": "date" }}'
    response = requests.post('https://services.sentinel-hub.com/api/v1/catalog/search', headers=headers, data=data)
    try:
        features = response.json()['features']
    except:
        print(response.json())
        features = []
    return features

@st.cache_data
def get_and_cache_available_dates(_df, field, year, start_date, end_date):
    dates = get_available_dates_for_field(_df, field, year, start_date, end_date)
    print(f'Caching Dates for {field}')
    return dates




def get_cuarted_df_for_field(df, field, date, metric, clientName):
    curated_date_path =  utils.get_curated_location_img_path(clientName, metric, date, field)
    if curated_date_path is not None:
        curated_df = gpd.read_file(curated_date_path)
    else:
        process.Download_image_in_given_date(clientName, metric, df, field, date)
        process.mask_downladed_image(clientName, metric, df, field, date)
        process.convert_maske_image_to_geodataframe(clientName, metric, df, field, date, df.crs)
        curated_date_path =  utils.get_curated_location_img_path(clientName, metric, date, field)
        curated_df = gpd.read_file(curated_date_path)
    return curated_df








def get_cuarted_df_for_field(df, field, date, metric, clientName):
    curated_date_path =  utils.get_curated_location_img_path(clientName, metric, date, field)
    if curated_date_path is not None:
        curated_df = gpd.read_file(curated_date_path)
    else:
        process.Download_image_in_given_date(clientName, metric, df, field, date)
        process.mask_downladed_image(clientName, metric, df, field, date)
        process.convert_maske_image_to_geodataframe(clientName, metric, df, field, date, df.crs)
        curated_date_path =  utils.get_curated_location_img_path(clientName, metric, date, field)
        curated_df = gpd.read_file(curated_date_path)
    return curated_df

def track(metric, field_name, src_df, client_name):

    dates = []
    date = -1
    if 'dates' not in st.session_state:
        st.session_state['dates'] = dates
    else:
        dates = st.session_state['dates']
    if 'date' not in st.session_state:
        st.session_state['date'] = date
    else:
        date = st.session_state['date']

    # Give the user the option to select year, start date and end date
    # with st.expander('Select Year, Start Date and End Date'):
    #     # Get the year
    #     years = [f'20{i}' for i in range(22, 25)]
    #     year = st.selectbox('Select Year: ', years, index=len(years)-2, key=f'Select Year Dropdown Menu - {metric}')
        
    #     # Set the min, max and default values for start and end dates
    #     min_val = f'{year}-01-01'
    #     max_val = f'{year}-12-31'
    #     default_val = f'{year}-11-01'
    #     min_val = datetime.strptime(min_val, '%Y-%m-%d')
    #     max_val = datetime.strptime(max_val, '%Y-%m-%d')
    #     default_val = datetime.strptime(default_val, '%Y-%m-%d')

    #     # Get the start and end dates
    #     start_date = st.date_input('Start Date', value=default_val, min_value=min_val, max_value=max_val, key=f'Start Date - {metric}')
    #     end_date = st.date_input('End Date', value=max_val, min_value=min_val, max_value=max_val, key=f'End Date - {metric}')


    # Get the dates with available data for that field when the user clicks the button
    # get_dates_button = st.button(f'Get Dates for Field {field_name} (Field ID: {field_name}) in {year} (from {start_date} to {end_date})',
    #                                 key=f'Get Dates Button - {metric}',
    #                                 help='Click to get the dates with available data for the selected field',
    #                                 use_container_width=True, type='primary')
    # if get_dates_button:
    if True:
        start_date = '2024-01-01'
        today = datetime.today()
        end_date = today.strftime('%Y-%m-%d')
        year = '2024'

        dates = get_and_cache_available_dates(src_df, field_name, year, start_date, end_date)
        # Add None to the end of the list to be used as a default value
        # dates.append(-1)
        #sort the dates from earliest to today
        dates = sorted(dates)

        #Add the dates to the session state
        st.session_state['dates'] = dates

    # Display the dropdown menu
    if len(dates) > 0:
        date = st.selectbox('Select Observation Date: ', dates, index=len(dates)-1, key=f'Select Date Dropdown Menu - {metric}')
        if date != -1:
            st.write('You selected:', date)
            #Add the date to the session state
            st.session_state['date'] = date
        else:
            st.write('Please Select A Date')
    else:
        st.info('No dates available for the selected field and dates range, select a different range or click the button to fetch the dates again')


    st.markdown('---')
    st.header('Show Field Data')

    # If a field and a date are selected, display the field data
    if date != -1:   

        # Get the field data at the selected date
        with st.spinner('Loading Field Data...'):
            # Get the metric data and cloud cover data for the selected field and date
            metric_data = get_cuarted_df_for_field(src_df, field_name, date, metric, client_name)
            cloud_cover_data = get_cuarted_df_for_field(src_df, field_name, date, 'CLP', client_name)
            
            #Merge the metric and cloud cover data on the geometry column
            field_data = metric_data.merge(cloud_cover_data, on='geometry')

        # Display the field data
        st.write(f'Field Data for {field_name} (Field ID: {field_name}) on {date}')
        st.write(field_data.head(2))

        #Get Avarage Cloud Cover
        avg_clp = field_data[f'CLP_{date}'].mean() *100

        # If the avarage cloud cover is greater than 80%, display a warning message
        if avg_clp > 80:
            st.warning(f'⚠️ The Avarage Cloud Cover is {avg_clp}%')
            st.info('Please Select A Different Date')

        ## Generate the field data Map ##

        #Title, Colormap and Legend
        title = f'{metric} for selected field {field_name} (Field ID: {field_name}) in {date}'
        cmap = 'RdYlGn'

        # Create a map of the field data
        field_data_map  = field_data.explore(
            column=f'{metric}_{date}',
            cmap=cmap,
            legend=True,
            vmin=0,
            vmax=1,
            marker_type='circle', marker_kwds={'radius':5.3, 'fill':True})
        
        # Add Google Satellite as a base map
        google_map = utils.basemaps['Google Satellite']
        google_map.add_to(field_data_map)

        # Display the map
        st_folium(field_data_map, width = 725, key=f'Field Data Map - {metric}')


        #Dwonload Links

        # If the field data is not empty, display the download links
        if len(field_data) > 0:
            # Create two columns for the download links
            download_as_shp_col, download_as_tiff_col = st.columns(2)

            # Create a shapefile of the field data and add a download link
            with download_as_shp_col:

                #Set the shapefile name and path based on the field id, metric and date
                extension = 'shp'
                shapefilename = f"{field_name}_{metric}_{date}.{extension}"
                path = f'./shapefiles/{field_name}/{metric}/{extension}'

                # Create the target directory if it doesn't exist
                os.makedirs(path, exist_ok=True)
                
                # Save the field data as a shapefile
                field_data.to_file(f'{path}/{shapefilename}')

                # Create a zip file of the shapefile
                files = []
                for i in os.listdir(path):
                    if os.path.isfile(os.path.join(path,i)):
                        if i[0:len(shapefilename)] == shapefilename:
                            files.append(os.path.join(path,i))
                zipFileName = f'{path}/{field_name}_{metric}_{date}.zip'
                zipObj = ZipFile(zipFileName, 'w')
                for file in files:
                    zipObj.write(file)
                zipObj.close()

                # Add a download link for the zip file
                with open(zipFileName, 'rb') as f:
                    st.download_button('Download as ShapeFile', f,file_name=zipFileName)

            # Get the tiff file path and create a download link
            with download_as_tiff_col:
                #get the tiff file path
                tiff_path = utils.get_masked_location_img_path(client_name, metric, date, field_name)
                # Add a download link for the tiff file
                donwnload_filename = f'{metric}_{field_name}_{date}.tiff'
                with open(tiff_path, 'rb') as f:
                    st.download_button('Download as Tiff File', f,file_name=donwnload_filename)

    else:
        st.info('Please Select A Field and A Date')
    

    # st.markdown('---')
    # st.header('Show Historic Averages')


    # #Let the user select the year, start date and end date
    # with st.expander('Select Year, Start Date and End Date'):
    #     # Get the year
    #     years = [f'20{i}' for i in range(22, 25)]
    #     year = st.selectbox('Select Year: ', years, index=len(years)-2, key=f'Select Year Dropdown Menu - {metric}- Historic Averages')
        
    #     # Set the start and end dates to the first and last dates of the year
    #     start_date = f'{year}-01-01'
    #     end_date = f'{year}-12-31'

    # # Get the dates for historic averages
    # historic_avarages_dates_for_field = get_and_cache_available_dates(src_df, field_name, year, start_date, end_date)

    # # Convert the dates to datetime objects and sort them ascendingly then convert them back to strings
    # historic_avarages_dates_for_field = [datetime.strptime(date, '%Y-%m-%d') for date in historic_avarages_dates_for_field]
    # historic_avarages_dates_for_field.sort()
    # historic_avarages_dates_for_field = [datetime.strftime(date, '%Y-%m-%d') for date in historic_avarages_dates_for_field]

    # # Get the number of dates
    # num_historic_dates = len(historic_avarages_dates_for_field)
    # st.write(f' Found {num_historic_dates} dates for field {field_name} in {year} (from {start_date} to {end_date})')

    # # Display the historic averages when the user clicks the button
    # display_historic_avgs_button = st.button(f'Display Historic Averages for Field {field_name} (Field ID: {field_name}) in {year} (from {start_date} to {end_date})',
    #                                             key=f'Display Historic Averages Button - {metric}',
    #                                             help='Click to display the historic averages for the selected field',
    #                                             use_container_width=True, type='primary')
    
    # # If the button is clicked, display the historic averages
    # if display_historic_avgs_button:

    #     #Initlize the historic averages cache dir and file path
    #     historic_avarages_cache_dir = './historic_avarages_cache'
    #     historic_avarages_cache_path = f'{historic_avarages_cache_dir}/historic_avarages_cache.joblib'
    #     historic_avarages_cache_clp_path = f'{historic_avarages_cache_dir}/historic_avarages_cache_clp.joblib'

    #     # Load the historic averages cache if it exists, else create it
    #     if os.path.exists(historic_avarages_cache_path):
    #         historic_avarages_cache = joblib.load(historic_avarages_cache_path)
    #     else:
    #         os.makedirs(historic_avarages_cache_dir, exist_ok=True)
    #         joblib.dump({}, historic_avarages_cache_path)
    #         historic_avarages_cache = joblib.load(historic_avarages_cache_path)
    #     if os.path.exists(historic_avarages_cache_clp_path):
    #         historic_avarages_cache_clp = joblib.load(historic_avarages_cache_clp_path)
    #     else:
    #         os.makedirs(historic_avarages_cache_dir, exist_ok=True)
    #         joblib.dump({}, historic_avarages_cache_clp_path)
    #         historic_avarages_cache_clp = joblib.load(historic_avarages_cache_clp_path)

    #     found_in_cache = False
    #     if client_name not in historic_avarages_cache:
    #         historic_avarages_cache[client_name] = {}
    #     if metric not in historic_avarages_cache[client_name]:
    #         historic_avarages_cache[client_name][metric] = {}
    #     if field_name not in historic_avarages_cache[client_name][metric]:
    #         historic_avarages_cache[client_name][metric][field_name] = {}
    #     if year not in historic_avarages_cache[client_name][metric][field_name]:
    #         historic_avarages_cache[client_name][metric][field_name][year] = {}
    #     if len(historic_avarages_cache[client_name][metric][field_name][year]) > 0:
    #         found_in_cache = True


    #     #Check if the field and year are in the cache_clp for the current metric and client
    #     found_in_cache_clp = False
    #     if client_name not in historic_avarages_cache_clp:
    #         historic_avarages_cache_clp[client_name] = {}
    #     if 'CLP' not in historic_avarages_cache_clp[client_name]:
    #         historic_avarages_cache_clp[client_name]['CLP'] = {}
    #     if field_name not in historic_avarages_cache_clp[client_name]['CLP']:
    #         historic_avarages_cache_clp[client_name]['CLP'][field_name] = {}
    #     if year not in historic_avarages_cache_clp[client_name]['CLP'][field_name]:
    #         historic_avarages_cache_clp[client_name]['CLP'][field_name][year] = {}
    #     if len(historic_avarages_cache_clp[client_name]['CLP'][field_name][year]) > 0:
    #         found_in_cache_clp = True


    #     # If Found in cache, get the historic averages from the cache
    #     if found_in_cache and found_in_cache_clp:
    #         st.info('Found Historic Averages in Cache')
    #         historic_avarages = historic_avarages_cache[client_name][metric][field_name][year]['historic_avarages']
    #         historic_avarages_dates = historic_avarages_cache[client_name][metric][field_name][year]['historic_avarages_dates']
    #         historic_avarages_clp = historic_avarages_cache_clp[client_name]['CLP'][field_name][year]['historic_avarages_clp']

    #     # Else, calculate the historic averages and add them to the cache
    #     else:
    #         st.info('Calculating Historic Averages...')


    #         #Empty lists for the historic averages , dates and cloud cover
    #         historic_avarages = []
    #         historic_avarages_dates = []
    #         historic_avarages_clp = []

    #         # Get the historic averages
    #         dates_for_field_bar = st.progress(0)
    #         with st.spinner('Calculating Historic Averages...'):
    #             with st.empty():
    #                 for i in range(num_historic_dates):
    #                     # Get the historic average for the current date
    #                     current_date = historic_avarages_dates_for_field[i]
    #                     current_df = get_cuarted_df_for_field(src_df, field_name, current_date, metric, client_name)
    #                     current_df_clp = get_cuarted_df_for_field(src_df, field_name, current_date, 'CLP', client_name)
    #                     current_avg = current_df[f'{metric}_{current_date}'].mean()
    #                     current_avg_clp = current_df_clp[f'CLP_{current_date}'].mean()
    #                     # Add the historic average and date to the lists
    #                     historic_avarages.append(current_avg)
    #                     historic_avarages_dates.append(current_date)
    #                     historic_avarages_clp.append(current_avg_clp)
    #                     # Update the progress bar
    #                     dates_for_field_bar.progress((i + 1)/(num_historic_dates))

    #                     # Create a plot of the historic averages with the cloud cover as dashed line and dates as x axis (rotated 90 degrees when needed)
    #                     fig, ax = plt.subplots(figsize=(5, 3))

    #                     # Set the x axis ticks and labels
    #                     x = historic_avarages_dates
    #                     x_ticks = [i for i in range(len(x))]
    #                     ax.set_xticks(x_ticks)
                        
    #                     #Set rotation to 90 degrees if the number of dates is greater than 10
    #                     rot = 0 if len(x) < 10 else 90
    #                     ax.set_xticklabels(x, rotation=rot)

    #                     # Set the y axis ticks and labels
    #                     y1 = historic_avarages
    #                     y2 = historic_avarages_clp
    #                     y_ticks = [i/10 for i in range(11)]
    #                     ax.set_yticks(y_ticks)
    #                     ax.set_yticklabels(y_ticks)

    #                     # Plot the historic averages and cloud cover
    #                     ax.plot(x_ticks, y1, label=f'{metric} Historic Averages')
    #                     ax.plot(x_ticks, y2, '--', label='Cloud Cover')
    #                     ax.legend()

    #                     # Set the title and axis labels
    #                     ax.set_title(f'{metric} Historic Averages for {field_name} (Field ID: {field_name}) in {year}')
    #                     ax.set_xlabel('Date')
    #                     ax.set_ylabel(f'{metric} Historic Averages')

    #                     # Display the plot
    #                     st.pyplot(fig, use_container_width=True)

    #         # Add the historic averages to the cache
    #         historic_avarages_cache[client_name][metric][field_name][year]['historic_avarages'] = historic_avarages
    #         historic_avarages_cache[client_name][metric][field_name][year]['historic_avarages_dates'] = historic_avarages_dates
    #         historic_avarages_cache_clp[client_name]['CLP'][field_name][year]['historic_avarages_clp'] = historic_avarages_clp
    #         # Save the cache
    #         joblib.dump(historic_avarages_cache, historic_avarages_cache_path)
    #         joblib.dump(historic_avarages_cache_clp, historic_avarages_cache_clp_path)
    #         # Tell the user that the historic averages are saved in the cache
    #         st.info('Historic Averages Saved in Cache')
    #         st.write(f'Cache Path: {historic_avarages_cache_path}')
    #         st.write(f'Cache CLP Path: {historic_avarages_cache_clp_path}')


    #     # Display the historic averages in nice plotly plot
    #     fig = make_subplots(specs=[[{"secondary_y": True}]])

    #     # Add the historic averages to the plot
    #     fig.add_trace(
    #         go.Scatter(x=historic_avarages_dates, y=historic_avarages, name=f'{metric} Historic Averages'),
    #         secondary_y=False,
    #     )

    #     # Add the cloud cover to the plot
    #     fig.add_trace(
    #         go.Scatter(x=historic_avarages_dates, y=historic_avarages_clp, name='Cloud Cover'),
    #         secondary_y=True,
    #     )

    #     # Set the title and axis labels
    #     fig.update_layout(title_text=f'{metric} Historic Averages for {field_name} (Field ID: {field_name}) in {year}')
    #     fig.update_xaxes(title_text='Date')
    #     fig.update_yaxes(title_text=f'{metric} Historic Averages', secondary_y=False)
    #     fig.update_yaxes(title_text='Cloud Cover', secondary_y=True)

    #     # Display the plot
    #     st.plotly_chart(fig)            
        

    # st.markdown('---')
    # st.header('Show Historic GIF')


    # #Let the user select the year, start date and end date of the GIF
    # with st.expander('Select Year, Start Date and End Date of the GIF'):
    #     # Get the year
    #     years = [f'20{i}' for i in range(16, 23)]
    #     year = st.selectbox('Select Year: ', years, index=len(years)-2, key=f'Select Year Dropdown Menu - {metric}- Historic Averages GIF')
        
    #     # Set the start and end dates to the first and last dates of the year
    #     start_date = f'{year}-01-01'
    #     end_date = f'{year}-12-31'

    # # Get the dates for historic GIF
    # historic_avarages_dates_for_field = get_and_cache_available_dates(src_df, field_name, year, start_date, end_date)

    # # Convert the dates to datetime objects and sort them ascendingly then convert them back to strings
    # historic_avarages_dates_for_field = [datetime.strptime(date, '%Y-%m-%d') for date in historic_avarages_dates_for_field]
    # historic_avarages_dates_for_field.sort()
    # historic_avarages_dates_for_field = [datetime.strftime(date, '%Y-%m-%d') for date in historic_avarages_dates_for_field]

    # # Get the number of dates
    # num_historic_dates = len(historic_avarages_dates_for_field)
    # st.write(f' Found {num_historic_dates} dates for field {field_name} in {year} (from {start_date} to {end_date})')

    # # Display the historic GIF when the user clicks the button
    # display_historic_GIF_button = st.button(f'Display Historic GIF  for Field {field_name} (Field ID: {field_name}) in {year} (from {start_date} to {end_date})',
    #                                             key=f'Display Historic GIF Button - {metric}',
    #                                             help='Click to display the historic GIF for the selected field',
    #                                             use_container_width=True, type='primary')
    
    # # If the button is clicked, display the historic GIF
    # if display_historic_GIF_button:

    #     #Initlize the historic GIF imgs and dates
    #     st.info('Generating Historic GIF...')
    #     historic_imgs = []
    #     historic_imgs_dates = []

    #     # Gen the historic GIF
    #     dates_for_field_bar = st.progress(0)
    #     with st.spinner('Generating Historic GIF...'):
    #         with st.empty():
    #             for i in range(num_historic_dates):
    #                 current_date = historic_avarages_dates_for_field[i]
    #                 current_df = get_cuarted_df_for_field(src_df, field_name, current_date, metric, client_name)
    #                 historic_imgs.append(current_df)
    #                 historic_imgs_dates.append(current_date)
    #                 dates_for_field_bar.progress((i + 1)/(num_historic_dates))

    #                 # Create a fig of the historic Img 
    #                 fig, ax = plt.subplots(figsize=(10, 5))

    #                 # Get the current img
    #                 current_df_lat_lon = utils.add_lat_lon_to_gdf_from_geometry(current_df)
    #                 current_img = utils.gdf_column_to_one_band_array(current_df_lat_lon, f'{metric}_{current_date}')

    #                 # Plot the historic Img
    #                 title = f'{metric} for selected field {field_name} (Field ID: {field_name}) in {current_date}'
    #                 ax.imshow(current_img)
    #                 ax.set_title(title)

    #                 # Display the plot
    #                 st.pyplot(fig)

    #     # Create the historic GIF
    #     historic_GIF_name = f'{metric}_{field_name}_{year}.gif'
    #     st.write('Creating Historic GIF...', historic_GIF_name)
       

def monitor_fields():
    current_user = greeting("Let's take a look how these fields are doing")
    if os.path.exists(f"fields_{current_user}.parquet"):
        gdf = gpd.read_parquet(f"fields_{current_user}.parquet")
    else:
        st.info("No Fields Added Yet!")
        return
    # st.info("Hover over the field to show the properties or check the Existing Fields List below")
    # fields_map = gdf.explore()
    # sat_basemap = utils.basemaps['Google Satellite']
    # sat_basemap.add_to(fields_map)
    # folium.LayerControl().add_to(fields_map)
    # # output = st_folium(fields_map, key="edit_map", height=300, width=600)
    # folium_static(fields_map, height=300, width=600)
    
    with st.expander("Existing Fields List", expanded=False):
        st.write(gdf)

    field_name = select_field(gdf)
    if field_name == "Select Field":
        st.info("No Field Selected Yet!")
    
    else:
        with st.expander("Metrics Explanation", expanded=False):
            st.write("NDVI: Normalized Difference Vegetation Index, Mainly used to monitor the health of vegetation")
            st.write("LAI: Leaf Area Index, Mainly used to monitor the productivity of vegetation")
            st.write("CAB: Chlorophyll Absorption in the Blue band, Mainly used to monitor the chlorophyll content in vegetation")
            st.write("NDMI: Normalized Difference Moisture Index, Mainly used to monitor the moisture content in vegetation")
        st.success("More metrics and analysis features will be added soon")
        metric = st.radio("Select Metric to Monitor", ["NDVI", "LAI", "CAB", "NDMI"], key="metric", index=0, help="Select the metric to monitor")
        st.write(f"Monitoring {metric} for {field_name}")

        track(metric, field_name, gdf, current_user)

        


if __name__ == '__main__':
    check_authentication()
    monitor_fields()