Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
def set_seed(seed):
|
6 |
+
torch.manual_seed(seed)
|
7 |
+
if torch.cuda.is_available():
|
8 |
+
torch.cuda.manual_seed_all(seed)
|
9 |
+
|
10 |
+
tokenizer = T5Tokenizer.from_pretrained('Deep1994/t5-paraphrase-quora')
|
11 |
+
|
12 |
+
@st.cache(allow_output_mutation=True)
|
13 |
+
def load_model():
|
14 |
+
model = T5ForConditionalGeneration.from_pretrained('Deep1994/t5-paraphrase-quora')
|
15 |
+
|
16 |
+
return model
|
17 |
+
|
18 |
+
model = load_model()
|
19 |
+
|
20 |
+
st.sidebar.subheader('Select decoding strategy below.')
|
21 |
+
decoding_strategy = st.sidebar.selectbox("decoding_strategy", ['Top k/p sampling', 'Beam Search'])
|
22 |
+
|
23 |
+
st.title('Paraphrase a question in English.')
|
24 |
+
|
25 |
+
st.write('This is a fine-tuned t5 model that will paraphrase\
|
26 |
+
your English input text into another English output\
|
27 |
+
by leveraging a pre-trained [Text-To-Text Transfer Tranformers](https://arxiv.org/abs/1910.10683) model.')
|
28 |
+
|
29 |
+
|
30 |
+
st.subheader('Input Text')
|
31 |
+
text = st.text_area(' ', height=100)
|
32 |
+
|
33 |
+
if text != '':
|
34 |
+
set_seed(1234) # for reproducibility
|
35 |
+
prefix = 'paraphrase: '
|
36 |
+
encoding = tokenizer.encode_plus(prefix + text, padding=True, return_tensors="pt")
|
37 |
+
input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"]
|
38 |
+
|
39 |
+
if str(decoding_strategy) == 'Top k/p sampling':
|
40 |
+
beam_outputs = model.generate(
|
41 |
+
input_ids=input_ids, attention_mask=attention_masks,
|
42 |
+
do_sample=True,
|
43 |
+
max_length=20,
|
44 |
+
top_k=50,
|
45 |
+
top_p=0.95,
|
46 |
+
early_stopping=True,
|
47 |
+
num_return_sequences=5
|
48 |
+
)
|
49 |
+
elif str(decoding_strategy) == 'Beam Search':
|
50 |
+
beam_outputs = model.generate(
|
51 |
+
input_ids=input_ids,
|
52 |
+
attention_mask=attention_masks,
|
53 |
+
max_length=20,
|
54 |
+
num_beams=5,
|
55 |
+
no_repeat_ngram_size=2,
|
56 |
+
num_return_sequences=5,
|
57 |
+
early_stopping=True
|
58 |
+
)
|
59 |
+
|
60 |
+
final_outputs =[]
|
61 |
+
for beam_output in beam_outputs:
|
62 |
+
sent = tokenizer.decode(beam_output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
63 |
+
# if sent.lower() != text.lower() and sent not in final_outputs:
|
64 |
+
# final_outputs.append(sent)
|
65 |
+
final_outputs.append(sent)
|
66 |
+
|
67 |
+
st.subheader('Paraphrased Text')
|
68 |
+
for i, final_output in enumerate(final_outputs):
|
69 |
+
st.write(final_output + '\n')
|