# upload_to_hf.py - Script to upload your Mamba Swarm to HuggingFace import os import shutil from huggingface_hub import HfApi, upload_folder import json # Import the actual model classes from modeling_mamba_swarm import MambaSwarmForCausalLM, MambaSwarmConfig def prepare_model_repo(): """Prepare model repository structure for HuggingFace""" # Create required files for HuggingFace model model_files = { "README.md": create_model_readme(), "config.json": create_model_config(), "requirements.txt": create_requirements(), "modeling_mamba_swarm.py": create_modeling_file() } # Create model repo directory os.makedirs("hf_model_repo", exist_ok=True) # Copy your mamba_swarm code shutil.copytree("mamba_swarm", "hf_model_repo/mamba_swarm", dirs_exist_ok=True) # Create HuggingFace specific files for filename, content in model_files.items(): with open(f"hf_model_repo/{filename}", "w") as f: f.write(content) print("Model repository prepared!") def create_model_readme(): return """--- license: apache-2.0 language: - en pipeline_tag: text-generation tags: - mamba - swarm - routing - language-model --- # Mamba Swarm: Dynamic Routing Language Model A novel architecture combining 100 specialized Mamba encoders with dynamic routing and aggregation for efficient language modeling. ## Architecture - **100 Mamba Encoders**: Specialized domain experts - **Dynamic Router**: Selects relevant encoders per input - **Aggregation Layer**: Combines encoder outputs - **Mamba Decoder**: Generates final responses ## Usage ```python from transformers import AutoModel, AutoTokenizer from mamba_swarm import MambaSwarmEngine # Load the model model = MambaSwarmEngine.from_pretrained("your-username/mamba-swarm-model") tokenizer = AutoTokenizer.from_pretrained("your-username/mamba-swarm-model") # Generate text input_text = "Explain quantum computing" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Training This model uses a three-phase training approach: 1. Collective pre-training on general data 2. Domain specialization for encoder groups 3. End-to-end coordination training ## Performance - **Parameters**: ~7B total (100 × 70M encoders) - **Domains**: Medical, Legal, Code, Science, General - **Routing Efficiency**: Only 10-20% of encoders active per query ## Citation ``` @misc{mamba-swarm-2025, title={Mamba Swarm: Dynamic Routing for Efficient Language Modeling}, author={Your Name}, year={2025} } ``` """ def create_model_config(): config = { "model_type": "mamba_swarm", "architectures": ["MambaSwarmForCausalLM"], "num_encoders": 100, "encoder_config": { "d_model": 768, "n_layer": 24, "vocab_size": 50280, "ssm_cfg": {}, "rms_norm": True, "residual_in_fp32": True, "fused_add_norm": True }, "router_config": { "top_k": 10, "routing_strategy": "content_based" }, "aggregator_config": { "method": "weighted_sum", "attention_heads": 8 }, "torch_dtype": "float16", "use_cache": True } return json.dumps(config, indent=2) def create_requirements(): return """torch>=2.0.0 transformers>=4.35.0 mamba-ssm>=1.2.0 causal-conv1d>=1.2.0 numpy>=1.21.0 scipy>=1.7.0 triton>=2.0.0 einops>=0.6.1 packaging>=20.0 """ def create_modeling_file(): return """# modeling_mamba_swarm.py - HuggingFace integration from transformers import PreTrainedModel, PretrainedConfig from transformers.modeling_outputs import CausalLMOutputWithPast import torch import torch.nn as nn class MambaSwarmConfig(PretrainedConfig): model_type = "mamba_swarm" def __init__( self, num_encoders=100, encoder_config=None, router_config=None, aggregator_config=None, **kwargs ): self.num_encoders = num_encoders self.encoder_config = encoder_config or {} self.router_config = router_config or {} self.aggregator_config = aggregator_config or {} super().__init__(**kwargs) class MambaSwarmForCausalLM(PreTrainedModel): config_class = MambaSwarmConfig def __init__(self, config): super().__init__(config) # Import your actual implementation from mamba_swarm.system.swarm_engine import MambaSwarmEngine self.swarm_engine = MambaSwarmEngine(config) def forward( self, input_ids=None, attention_mask=None, labels=None, **kwargs ): # Your forward pass implementation outputs = self.swarm_engine(input_ids, attention_mask) loss = None if labels is not None: # Calculate loss loss_fct = nn.CrossEntropyLoss() loss = loss_fct(outputs.logits.view(-1, outputs.logits.size(-1)), labels.view(-1)) return CausalLMOutputWithPast( loss=loss, logits=outputs.logits, past_key_values=outputs.past_key_values, ) def generate(self, *args, **kwargs): return self.swarm_engine.generate(*args, **kwargs) @classmethod def from_pretrained(cls, model_name_or_path, *model_args, **kwargs): # Custom loading logic if needed return super().from_pretrained(model_name_or_path, *model_args, **kwargs) """ def upload_model(): """Upload model code to HuggingFace""" api = HfApi() # Upload model repository upload_folder( folder_path="hf_model_repo", repo_id="your-username/mamba-swarm-model", # Replace with your username repo_type="model", commit_message="Initial upload of Mamba Swarm model" ) print("Model uploaded successfully!") def upload_weights(): """Upload model weights separately""" # This assumes you have trained weights in checkpoints/ api = HfApi() upload_folder( folder_path="checkpoints", repo_id="your-username/mamba-swarm-weights", # Replace with your username repo_type="model", commit_message="Upload trained model weights" ) print("Weights uploaded successfully!") if __name__ == "__main__": prepare_model_repo() upload_model() # upload_weights() # Uncomment when you have trained weights