Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- configuration_mamba_swarm.py +58 -0
- tokenizer.py +63 -0
- vocab.json +0 -0
configuration_mamba_swarm.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class MambaSwarmConfig(PretrainedConfig):
|
4 |
+
model_type = "mamba_swarm"
|
5 |
+
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
num_mamba_encoders=5,
|
9 |
+
max_mamba_encoders=1000,
|
10 |
+
d_model=768,
|
11 |
+
d_state=16,
|
12 |
+
d_conv=4,
|
13 |
+
expand_factor=2,
|
14 |
+
vocab_size=50257,
|
15 |
+
max_sequence_length=2048,
|
16 |
+
pad_token_id=50256,
|
17 |
+
bos_token_id=50256,
|
18 |
+
eos_token_id=50256,
|
19 |
+
tie_word_embeddings=False,
|
20 |
+
use_cache=True,
|
21 |
+
gating_config=None,
|
22 |
+
routing_config=None,
|
23 |
+
**kwargs
|
24 |
+
):
|
25 |
+
super().__init__(
|
26 |
+
pad_token_id=pad_token_id,
|
27 |
+
bos_token_id=bos_token_id,
|
28 |
+
eos_token_id=eos_token_id,
|
29 |
+
tie_word_embeddings=tie_word_embeddings,
|
30 |
+
**kwargs
|
31 |
+
)
|
32 |
+
|
33 |
+
self.num_mamba_encoders = num_mamba_encoders
|
34 |
+
self.max_mamba_encoders = max_mamba_encoders
|
35 |
+
self.d_model = d_model
|
36 |
+
self.d_state = d_state
|
37 |
+
self.d_conv = d_conv
|
38 |
+
self.expand_factor = expand_factor
|
39 |
+
self.vocab_size = vocab_size
|
40 |
+
self.max_sequence_length = max_sequence_length
|
41 |
+
self.use_cache = use_cache
|
42 |
+
|
43 |
+
# Default gating configuration
|
44 |
+
if gating_config is None:
|
45 |
+
gating_config = {
|
46 |
+
"gating_type": "learned",
|
47 |
+
"top_k": 2,
|
48 |
+
"load_balancing_loss_coef": 0.01
|
49 |
+
}
|
50 |
+
self.gating_config = gating_config
|
51 |
+
|
52 |
+
# Default routing configuration
|
53 |
+
if routing_config is None:
|
54 |
+
routing_config = {
|
55 |
+
"routing_strategy": "dynamic",
|
56 |
+
"aggregation_method": "weighted_average"
|
57 |
+
}
|
58 |
+
self.routing_config = routing_config
|
tokenizer.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# =============================================================================
|
2 |
+
# core/tokenizer.py
|
3 |
+
# =============================================================================
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
import torch
|
6 |
+
from config import MambaConfig
|
7 |
+
from typing import List, Dict, Union
|
8 |
+
|
9 |
+
class MambaTokenizer:
|
10 |
+
def __init__(self, config: MambaConfig, tokenizer_name: str = "gpt2"):
|
11 |
+
self.config = config
|
12 |
+
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
13 |
+
|
14 |
+
# Add special tokens if needed
|
15 |
+
if self.tokenizer.pad_token is None:
|
16 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
17 |
+
|
18 |
+
self.vocab_size = len(self.tokenizer)
|
19 |
+
|
20 |
+
def encode(self, text: str, max_length: int = None) -> Dict[str, torch.Tensor]:
|
21 |
+
"""Encode text to token ids"""
|
22 |
+
if max_length is None:
|
23 |
+
max_length = self.config.max_seq_len
|
24 |
+
|
25 |
+
encoded = self.tokenizer(
|
26 |
+
text,
|
27 |
+
max_length=max_length,
|
28 |
+
padding="max_length",
|
29 |
+
truncation=True,
|
30 |
+
return_tensors="pt"
|
31 |
+
)
|
32 |
+
|
33 |
+
return {
|
34 |
+
"input_ids": encoded["input_ids"],
|
35 |
+
"attention_mask": encoded["attention_mask"]
|
36 |
+
}
|
37 |
+
|
38 |
+
def encode_batch(self, texts: List[str], max_length: int = None) -> Dict[str, torch.Tensor]:
|
39 |
+
"""Encode batch of texts"""
|
40 |
+
if max_length is None:
|
41 |
+
max_length = self.config.max_seq_len
|
42 |
+
|
43 |
+
encoded = self.tokenizer(
|
44 |
+
texts,
|
45 |
+
max_length=max_length,
|
46 |
+
padding="max_length",
|
47 |
+
truncation=True,
|
48 |
+
return_tensors="pt"
|
49 |
+
)
|
50 |
+
|
51 |
+
return {
|
52 |
+
"input_ids": encoded["input_ids"],
|
53 |
+
"attention_mask": encoded["attention_mask"]
|
54 |
+
}
|
55 |
+
|
56 |
+
def decode(self, token_ids: torch.Tensor, skip_special_tokens: bool = True) -> str:
|
57 |
+
"""Decode token ids to text"""
|
58 |
+
return self.tokenizer.decode(token_ids, skip_special_tokens=skip_special_tokens)
|
59 |
+
|
60 |
+
def decode_batch(self, token_ids: torch.Tensor, skip_special_tokens: bool = True) -> List[str]:
|
61 |
+
"""Decode batch of token ids"""
|
62 |
+
return self.tokenizer.batch_decode(token_ids, skip_special_tokens=skip_special_tokens)
|
63 |
+
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|