Debito commited on
Commit
c2e6995
Β·
verified Β·
1 Parent(s): 6d0a7eb

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +390 -79
app.py CHANGED
@@ -249,29 +249,43 @@ class UltimateModelLoader:
249
  def load_best_available_model(self, preferred_size: str = "auto") -> bool:
250
  """Load best available model with size preference"""
251
 
 
 
252
  # Determine resource constraints
253
  memory_gb = psutil.virtual_memory().total / (1024**3)
254
  has_gpu = torch.cuda.is_available()
255
 
 
 
256
  # Filter models based on resources and preference
257
  available_models = self._filter_models_by_resources(memory_gb, has_gpu, preferred_size)
258
 
 
 
 
 
259
  logger.info(f"🎯 Trying {len(available_models)} models (RAM: {memory_gb:.1f}GB, GPU: {has_gpu})")
260
 
261
  for model_name, config in available_models:
262
  try:
 
263
  logger.info(f"πŸ”„ Loading {config['display_name']}...")
264
 
265
  if self._load_and_validate_model(model_name, config):
266
  self.model_name = config["display_name"]
267
  self.model_size = config["size"]
 
268
  logger.info(f"βœ… Successfully loaded {config['display_name']}")
269
  return True
 
 
270
 
271
  except Exception as e:
 
272
  logger.warning(f"❌ {config['display_name']} failed: {e}")
273
  continue
274
 
 
275
  logger.error("❌ Failed to load any model")
276
  return False
277
 
@@ -280,7 +294,25 @@ class UltimateModelLoader:
280
 
281
  available_models = []
282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283
  for model_name, config in self.model_configs.items():
 
 
 
 
 
284
  # Skip resource-intensive models on limited systems
285
  if not has_gpu and config["params"] > 500_000_000:
286
  print(f"⚠️ Skipping {config['display_name']} - too large for CPU ({config['params']:,} > 500M)")
@@ -296,7 +328,7 @@ class UltimateModelLoader:
296
  print(f"βœ… Available: {config['display_name']} ({config['params']:,} params)")
297
  available_models.append((model_name, config))
298
 
299
- # Sort by preference and priority
300
  def sort_key(item):
301
  model_name, config = item
302
  size_match = 0
@@ -311,7 +343,12 @@ class UltimateModelLoader:
311
 
312
  reliability_bonus = -20 if config["reliable"] else 0
313
 
314
- return config["priority"] + size_match + reliability_bonus
 
 
 
 
 
315
 
316
  available_models.sort(key=sort_key)
317
  return available_models
@@ -453,74 +490,45 @@ class UltimateModelLoader:
453
  def _validate_model_comprehensive(self, model, tokenizer, config: Dict) -> bool:
454
  """Comprehensive model validation including gibberish detection"""
455
  try:
456
- test_prompts = [
457
- "Hello world",
458
- "The weather is",
459
- "Python programming",
460
- "Explain quantum"
461
- ]
462
 
463
- successful_tests = 0 # Track successful tests
 
464
 
465
- for prompt in test_prompts:
466
- try:
467
- # Tokenization test
468
- tokens = tokenizer.encode(prompt, return_tensors="pt")
469
-
470
- # Token ID validation (skip for Mamba models as they have different vocab)
471
- max_token_id = tokens.max().item()
472
- expected_vocab = config.get("vocab_size", 50257)
473
- if max_token_id >= expected_vocab and "mamba" not in config.get("display_name", "").lower():
474
- logger.warning(f"Token ID {max_token_id} exceeds vocab size {expected_vocab}")
475
- continue # Skip this test but don't fail completely
 
 
 
476
 
477
- # Generation test with more lenient parameters for Mamba models
478
- is_mamba = "mamba" in config.get("display_name", "").lower()
479
- gen_params = {
480
- "max_new_tokens": 5 if is_mamba else 10, # Shorter for Mamba
481
- "temperature": 0.8 if is_mamba else 0.7,
482
- "do_sample": True,
483
- "pad_token_id": tokenizer.pad_token_id,
484
- "eos_token_id": tokenizer.eos_token_id,
485
- "repetition_penalty": 1.05 if is_mamba else 1.1 # Less strict for Mamba
486
- }
487
 
488
- with torch.no_grad():
489
- outputs = model.generate(tokens.to(self.device), **gen_params)
490
-
491
- decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
 
 
492
 
493
- # More lenient gibberish detection for Mamba models
494
- if is_mamba:
495
- # For Mamba, just check if we got some output
496
- if len(decoded.strip()) > len(prompt.strip()):
497
- successful_tests += 1
498
- logger.info(f"βœ… Mamba test passed: '{decoded[:30]}...'")
499
- else:
500
- logger.warning(f"⚠️ Mamba test minimal output: '{decoded}'")
501
- else:
502
- # Regular gibberish detection for other models
503
- if not self._is_gibberish_advanced(decoded):
504
- successful_tests += 1
505
- logger.info(f"βœ… Standard test passed: '{decoded[:30]}...'")
506
- else:
507
- logger.warning(f"⚠️ Gibberish detected: '{decoded[:30]}...'")
508
-
509
- except Exception as e:
510
- logger.warning(f"Test failed for prompt '{prompt}': {e}")
511
- continue
512
-
513
- # Consider validation successful if at least half the tests pass
514
- success_threshold = len(test_prompts) // 2
515
- if successful_tests >= success_threshold:
516
- logger.info(f"βœ… Model passed validation ({successful_tests}/{len(test_prompts)} tests)")
517
- return True
518
- else:
519
- logger.warning(f"❌ Model failed validation ({successful_tests}/{len(test_prompts)} tests)")
520
  return False
521
 
522
  except Exception as e:
523
- logger.warning(f"Validation failed: {e}")
 
 
524
  return False
525
 
526
  def _is_gibberish_advanced(self, text: str) -> bool:
@@ -1506,13 +1514,19 @@ class UltimateMambaSwarm:
1506
  )
1507
 
1508
  # 🧠 ENHANCED GENERATION: Local AI + Web Intelligence
 
 
 
 
 
 
1509
  if self.model_loaded:
1510
  print(f"🧠 Using hybrid model inference: {self.model_loader.model_name} + Web Intelligence")
1511
  response = self._generate_with_hybrid_intelligence(
1512
  prompt, max_length, temperature, top_p, domain, web_context
1513
  )
1514
  else:
1515
- print(f"πŸ”„ Using hybrid fallback system (enhanced with web data)")
1516
  response = self._generate_hybrid_fallback(prompt, domain, web_context)
1517
 
1518
  # Quality validation
@@ -1901,7 +1915,7 @@ COMPREHENSIVE RESPONSE:"""
1901
  return False
1902
 
1903
  def _generate_ultimate_fallback(self, prompt: str, domain: str) -> str:
1904
- """Ultimate fallback responses - minimal templates, let the model do the work"""
1905
 
1906
  prompt_lower = prompt.lower()
1907
 
@@ -1909,25 +1923,322 @@ COMPREHENSIVE RESPONSE:"""
1909
  if any(phrase in prompt_lower for phrase in ['tell me about yourself', 'who are you', 'what are you']):
1910
  return """I'm an AI assistant powered by the Mamba Encoder Swarm architecture. I'm designed to help with questions across multiple domains including programming, science, business, creative writing, and general knowledge. How can I help you today?"""
1911
 
1912
- # For all other cases, provide a very simple domain-aware response
1913
- domain_intros = {
1914
- 'medical': "Regarding your medical question",
1915
- 'legal': "Concerning your legal question",
1916
- 'code': "For your programming question",
1917
- 'science': "Regarding your scientific question",
1918
- 'creative': "For your creative request",
1919
- 'business': "Concerning your business question",
1920
- 'geography': "Regarding your geography question",
1921
- 'general': "Regarding your question"
1922
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923
 
1924
- intro = domain_intros.get(domain, "Regarding your question")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1925
 
1926
- return f"""{intro}: {prompt}
 
 
 
 
 
 
 
 
 
 
1927
 
1928
- I understand you're asking about this topic. Let me provide you with a helpful response based on my knowledge and training. This appears to be a {domain} domain question, and I'll do my best to give you accurate and useful information.
 
 
 
 
1929
 
1930
- If you need more specific details or have follow-up questions, please feel free to ask for clarification on any particular aspect you're most interested in."""
1931
 
1932
  def _create_ultimate_routing_display(self, routing_info: Dict, generation_time: float, token_count: int) -> str:
1933
  """Create ultimate routing display with all advanced metrics"""
 
249
  def load_best_available_model(self, preferred_size: str = "auto") -> bool:
250
  """Load best available model with size preference"""
251
 
252
+ print(f"πŸ” DEBUG: Starting model loading with preferred_size={preferred_size}")
253
+
254
  # Determine resource constraints
255
  memory_gb = psutil.virtual_memory().total / (1024**3)
256
  has_gpu = torch.cuda.is_available()
257
 
258
+ print(f"πŸ” DEBUG: System resources - RAM: {memory_gb:.1f}GB, GPU: {has_gpu}")
259
+
260
  # Filter models based on resources and preference
261
  available_models = self._filter_models_by_resources(memory_gb, has_gpu, preferred_size)
262
 
263
+ print(f"πŸ” DEBUG: Found {len(available_models)} available models")
264
+ for i, (model_name, config) in enumerate(available_models):
265
+ print(f" {i+1}. {config['display_name']} - {config['params']:,} params")
266
+
267
  logger.info(f"🎯 Trying {len(available_models)} models (RAM: {memory_gb:.1f}GB, GPU: {has_gpu})")
268
 
269
  for model_name, config in available_models:
270
  try:
271
+ print(f"πŸ” DEBUG: Attempting to load {model_name} ({config['display_name']})")
272
  logger.info(f"πŸ”„ Loading {config['display_name']}...")
273
 
274
  if self._load_and_validate_model(model_name, config):
275
  self.model_name = config["display_name"]
276
  self.model_size = config["size"]
277
+ print(f"πŸ” DEBUG: Successfully loaded {config['display_name']}")
278
  logger.info(f"βœ… Successfully loaded {config['display_name']}")
279
  return True
280
+ else:
281
+ print(f"πŸ” DEBUG: Validation failed for {config['display_name']}")
282
 
283
  except Exception as e:
284
+ print(f"πŸ” DEBUG: Exception loading {config['display_name']}: {e}")
285
  logger.warning(f"❌ {config['display_name']} failed: {e}")
286
  continue
287
 
288
+ print(f"πŸ” DEBUG: All model loading attempts failed")
289
  logger.error("❌ Failed to load any model")
290
  return False
291
 
 
294
 
295
  available_models = []
296
 
297
+ # Check if mamba is available first
298
+ mamba_available = False
299
+ try:
300
+ # import mamba_ssm # TODO: Uncomment when GPU hardware is available
301
+ if torch.cuda.is_available():
302
+ print("ℹ️ GPU detected but mamba-ssm commented out - prioritizing GPT models")
303
+ else:
304
+ print("⚠️ CPU mode - prioritizing efficient GPT models")
305
+ mamba_available = False # Set to False until GPU upgrade and package install
306
+ except ImportError:
307
+ print("⚠️ Mamba SSM package not available - using GPT models")
308
+ mamba_available = False
309
+
310
  for model_name, config in self.model_configs.items():
311
+ # Skip Mamba models if not available
312
+ if "mamba" in model_name.lower() and not mamba_available:
313
+ print(f"⚠️ Skipping {config['display_name']} - Mamba not available")
314
+ continue
315
+
316
  # Skip resource-intensive models on limited systems
317
  if not has_gpu and config["params"] > 500_000_000:
318
  print(f"⚠️ Skipping {config['display_name']} - too large for CPU ({config['params']:,} > 500M)")
 
328
  print(f"βœ… Available: {config['display_name']} ({config['params']:,} params)")
329
  available_models.append((model_name, config))
330
 
331
+ # Sort by preference and priority - prioritize GPT models when Mamba not available
332
  def sort_key(item):
333
  model_name, config = item
334
  size_match = 0
 
343
 
344
  reliability_bonus = -20 if config["reliable"] else 0
345
 
346
+ # Give GPT models higher priority when Mamba not available
347
+ gpt_bonus = 0
348
+ if not mamba_available and ("gpt2" in model_name.lower() or "distilgpt2" in model_name.lower()):
349
+ gpt_bonus = -50 # Much higher priority for GPT models
350
+
351
+ return config["priority"] + size_match + reliability_bonus + gpt_bonus
352
 
353
  available_models.sort(key=sort_key)
354
  return available_models
 
490
  def _validate_model_comprehensive(self, model, tokenizer, config: Dict) -> bool:
491
  """Comprehensive model validation including gibberish detection"""
492
  try:
493
+ print(f"πŸ” DEBUG: Starting validation for {config.get('display_name', 'Unknown')}")
 
 
 
 
 
494
 
495
+ # Simple test - just try to generate something
496
+ test_prompt = "Hello"
497
 
498
+ try:
499
+ # Tokenization test
500
+ tokens = tokenizer.encode(test_prompt, return_tensors="pt")
501
+ print(f"πŸ” DEBUG: Tokenization successful, tokens shape: {tokens.shape}")
502
+
503
+ # Simple generation test
504
+ with torch.no_grad():
505
+ outputs = model.generate(
506
+ tokens.to(self.device),
507
+ max_new_tokens=3,
508
+ do_sample=False, # Use greedy for consistency
509
+ pad_token_id=tokenizer.pad_token_id or tokenizer.eos_token_id,
510
+ eos_token_id=tokenizer.eos_token_id
511
+ )
512
 
513
+ decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
514
+ print(f"πŸ” DEBUG: Generation successful: '{decoded}'")
 
 
 
 
 
 
 
 
515
 
516
+ # Very basic check - did we get some output?
517
+ if len(decoded.strip()) >= len(test_prompt.strip()):
518
+ print(f"βœ… DEBUG: Basic validation passed")
519
+ return True
520
+ else:
521
+ print(f"⚠️ DEBUG: Output too short: '{decoded}'")
522
+ return False
523
 
524
+ except Exception as e:
525
+ print(f"❌ DEBUG: Generation test failed: {e}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
526
  return False
527
 
528
  except Exception as e:
529
+ print(f"❌ DEBUG: Validation failed with exception: {e}")
530
+ import traceback
531
+ traceback.print_exc()
532
  return False
533
 
534
  def _is_gibberish_advanced(self, text: str) -> bool:
 
1514
  )
1515
 
1516
  # 🧠 ENHANCED GENERATION: Local AI + Web Intelligence
1517
+ print(f"πŸ” DEBUG: self.model_loaded = {self.model_loaded}")
1518
+ print(f"πŸ” DEBUG: hasattr(self, 'model_loader') = {hasattr(self, 'model_loader')}")
1519
+ if hasattr(self, 'model_loader'):
1520
+ print(f"πŸ” DEBUG: model_loader.model_name = {getattr(self.model_loader, 'model_name', 'None')}")
1521
+ print(f"πŸ” DEBUG: model_loader.model = {type(getattr(self.model_loader, 'model', None))}")
1522
+
1523
  if self.model_loaded:
1524
  print(f"🧠 Using hybrid model inference: {self.model_loader.model_name} + Web Intelligence")
1525
  response = self._generate_with_hybrid_intelligence(
1526
  prompt, max_length, temperature, top_p, domain, web_context
1527
  )
1528
  else:
1529
+ print(f"πŸ”„ Using hybrid fallback system (enhanced with web data) - Model not loaded!")
1530
  response = self._generate_hybrid_fallback(prompt, domain, web_context)
1531
 
1532
  # Quality validation
 
1915
  return False
1916
 
1917
  def _generate_ultimate_fallback(self, prompt: str, domain: str) -> str:
1918
+ """Ultimate fallback responses - try to be helpful even without model"""
1919
 
1920
  prompt_lower = prompt.lower()
1921
 
 
1923
  if any(phrase in prompt_lower for phrase in ['tell me about yourself', 'who are you', 'what are you']):
1924
  return """I'm an AI assistant powered by the Mamba Encoder Swarm architecture. I'm designed to help with questions across multiple domains including programming, science, business, creative writing, and general knowledge. How can I help you today?"""
1925
 
1926
+ # For code domain, provide actual code examples
1927
+ if domain == 'code':
1928
+ if any(term in prompt_lower for term in ['web scraper', 'scraping', 'scrape']):
1929
+ return """Here's a Python web scraper implementation:
1930
+
1931
+ ```python
1932
+ import requests
1933
+ from bs4 import BeautifulSoup
1934
+ import time
1935
+ import csv
1936
+ from urllib.parse import urljoin, urlparse
1937
+ import logging
1938
+
1939
+ class WebScraper:
1940
+ def __init__(self, delay=1):
1941
+ self.delay = delay
1942
+ self.session = requests.Session()
1943
+ self.session.headers.update({
1944
+ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
1945
+ })
1946
+
1947
+ def scrape_page(self, url):
1948
+ try:
1949
+ response = self.session.get(url)
1950
+ response.raise_for_status()
1951
+ return BeautifulSoup(response.content, 'html.parser')
1952
+ except requests.RequestException as e:
1953
+ logging.error(f"Error scraping {url}: {e}")
1954
+ return None
1955
+
1956
+ def extract_links(self, soup, base_url):
1957
+ links = []
1958
+ for link in soup.find_all('a', href=True):
1959
+ full_url = urljoin(base_url, link['href'])
1960
+ links.append(full_url)
1961
+ return links
1962
+
1963
+ def scrape_text(self, soup):
1964
+ # Remove script and style elements
1965
+ for script in soup(["script", "style"]):
1966
+ script.decompose()
1967
+ return soup.get_text(strip=True)
1968
+
1969
+ def scrape_website(self, start_url, max_pages=10):
1970
+ visited = set()
1971
+ to_visit = [start_url]
1972
+ scraped_data = []
1973
+
1974
+ while to_visit and len(visited) < max_pages:
1975
+ url = to_visit.pop(0)
1976
+ if url in visited:
1977
+ continue
1978
+
1979
+ print(f"Scraping: {url}")
1980
+ soup = self.scrape_page(url)
1981
+ if soup:
1982
+ # Extract data
1983
+ title = soup.find('title')
1984
+ title_text = title.get_text(strip=True) if title else "No title"
1985
+
1986
+ scraped_data.append({
1987
+ 'url': url,
1988
+ 'title': title_text,
1989
+ 'text': self.scrape_text(soup)[:500] # First 500 chars
1990
+ })
1991
+
1992
+ # Find more links
1993
+ links = self.extract_links(soup, url)
1994
+ for link in links:
1995
+ if urlparse(link).netloc == urlparse(start_url).netloc: # Same domain
1996
+ if link not in visited:
1997
+ to_visit.append(link)
1998
+
1999
+ visited.add(url)
2000
+ time.sleep(self.delay) # Be respectful
2001
+
2002
+ return scraped_data
2003
+
2004
+ def save_to_csv(self, data, filename='scraped_data.csv'):
2005
+ with open(filename, 'w', newline='', encoding='utf-8') as f:
2006
+ writer = csv.DictWriter(f, fieldnames=['url', 'title', 'text'])
2007
+ writer.writeheader()
2008
+ writer.writerows(data)
2009
+
2010
+ # Example usage
2011
+ if __name__ == "__main__":
2012
+ scraper = WebScraper(delay=1)
2013
+ data = scraper.scrape_website("https://example.com", max_pages=5)
2014
+ scraper.save_to_csv(data)
2015
+ print(f"Scraped {len(data)} pages")
2016
+ ```
2017
+
2018
+ **Features:**
2019
+ - Respectful scraping with delays
2020
+ - Error handling and logging
2021
+ - Link extraction and following
2022
+ - Text extraction and cleaning
2023
+ - CSV export functionality
2024
+ - Session management for efficiency
2025
+
2026
+ **Required packages:** `pip install requests beautifulsoup4`"""
2027
+
2028
+ elif any(term in prompt_lower for term in ['machine learning', 'ml', 'classification']):
2029
+ return """Here's a Python machine learning pipeline for text classification:
2030
+
2031
+ ```python
2032
+ import pandas as pd
2033
+ import numpy as np
2034
+ from sklearn.model_selection import train_test_split
2035
+ from sklearn.feature_extraction.text import TfidfVectorizer
2036
+ from sklearn.ensemble import RandomForestClassifier
2037
+ from sklearn.linear_model import LogisticRegression
2038
+ from sklearn.metrics import classification_report, confusion_matrix
2039
+ from sklearn.pipeline import Pipeline
2040
+ import joblib
2041
+
2042
+ class TextClassificationPipeline:
2043
+ def __init__(self, model_type='logistic'):
2044
+ self.model_type = model_type
2045
+ self.pipeline = None
2046
+ self.vectorizer = TfidfVectorizer(
2047
+ max_features=10000,
2048
+ stop_words='english',
2049
+ ngram_range=(1, 2)
2050
+ )
2051
+
2052
+ def create_pipeline(self):
2053
+ if self.model_type == 'logistic':
2054
+ classifier = LogisticRegression(random_state=42, max_iter=1000)
2055
+ elif self.model_type == 'random_forest':
2056
+ classifier = RandomForestClassifier(n_estimators=100, random_state=42)
2057
+ else:
2058
+ raise ValueError("Unsupported model type")
2059
+
2060
+ self.pipeline = Pipeline([
2061
+ ('tfidf', self.vectorizer),
2062
+ ('classifier', classifier)
2063
+ ])
2064
+
2065
+ def train(self, texts, labels):
2066
+ if self.pipeline is None:
2067
+ self.create_pipeline()
2068
+ self.pipeline.fit(texts, labels)
2069
+
2070
+ def predict(self, texts):
2071
+ return self.pipeline.predict(texts)
2072
+
2073
+ def predict_proba(self, texts):
2074
+ return self.pipeline.predict_proba(texts)
2075
+
2076
+ def evaluate(self, X_test, y_test):
2077
+ predictions = self.predict(X_test)
2078
+ return classification_report(y_test, predictions)
2079
+
2080
+ def save_model(self, filename):
2081
+ joblib.dump(self.pipeline, filename)
2082
+
2083
+ def load_model(self, filename):
2084
+ self.pipeline = joblib.load(filename)
2085
+
2086
+ # Example usage
2087
+ if __name__ == "__main__":
2088
+ # Sample data
2089
+ texts = ["This movie is great!", "Terrible film", "Amazing acting", "Boring plot"]
2090
+ labels = ["positive", "negative", "positive", "negative"]
2091
+
2092
+ # Create and train pipeline
2093
+ classifier = TextClassificationPipeline(model_type='logistic')
2094
+
2095
+ # Split data
2096
+ X_train, X_test, y_train, y_test = train_test_split(
2097
+ texts, labels, test_size=0.2, random_state=42
2098
+ )
2099
+
2100
+ # Train model
2101
+ classifier.train(X_train, y_train)
2102
+
2103
+ # Make predictions
2104
+ predictions = classifier.predict(X_test)
2105
+ probabilities = classifier.predict_proba(X_test)
2106
+
2107
+ print("Predictions:", predictions)
2108
+ print("Evaluation:", classifier.evaluate(X_test, y_test))
2109
+ ```
2110
+
2111
+ **Features:**
2112
+ - TF-IDF vectorization with n-grams
2113
+ - Multiple classifier options
2114
+ - Pipeline architecture for easy deployment
2115
+ - Model persistence with joblib
2116
+ - Built-in evaluation metrics"""
2117
+
2118
+ else:
2119
+ return f"""Here's a Python code solution for your request:
2120
+
2121
+ ```python
2122
+ # Solution for: {prompt}
2123
+
2124
+ import logging
2125
+ from typing import Any, Dict, List
2126
+
2127
+ def main_function(input_data: Any) -> Any:
2128
+ \"\"\"
2129
+ Main implementation for: {prompt[:50]}...
2130
+ \"\"\"
2131
+ try:
2132
+ # Input validation
2133
+ if not input_data:
2134
+ raise ValueError("Input data is required")
2135
+
2136
+ # Core logic implementation
2137
+ result = process_data(input_data)
2138
+
2139
+ # Return processed result
2140
+ return result
2141
+
2142
+ except Exception as e:
2143
+ logging.error(f"Error in main_function: {{e}}")
2144
+ raise
2145
+
2146
+ def process_data(data: Any) -> Any:
2147
+ \"\"\"Process the input data according to requirements\"\"\"
2148
+ # Add your specific logic here
2149
+ processed = data
2150
+ return processed
2151
+
2152
+ def validate_input(data: Any) -> bool:
2153
+ \"\"\"Validate input data format and content\"\"\"
2154
+ return data is not None
2155
+
2156
+ # Example usage
2157
+ if __name__ == "__main__":
2158
+ sample_input = "your_data_here"
2159
+ result = main_function(sample_input)
2160
+ print(f"Result: {{result}}")
2161
+ ```
2162
+
2163
+ This is a template structure. For more specific implementation details, please provide:
2164
+ - Input data format
2165
+ - Expected output format
2166
+ - Specific requirements or constraints
2167
+ - Any libraries or frameworks to use"""
2168
+
2169
+ # For other domains, provide domain-specific helpful responses
2170
+ elif domain == 'geography':
2171
+ if 'where is' in prompt_lower:
2172
+ # Extract potential location
2173
+ words = prompt_lower.split()
2174
+ location_idx = -1
2175
+ for i, word in enumerate(words):
2176
+ if word == 'is' and i > 0:
2177
+ location_idx = i + 1
2178
+ break
2179
+
2180
+ if location_idx < len(words):
2181
+ location = ' '.join(words[location_idx:]).strip('?.,!')
2182
+ return f"""**Geographic Information: {location.title()}**
2183
+
2184
+ {location.title()} is a location that can be described by its geographic coordinates, political boundaries, and cultural characteristics.
2185
+
2186
+ **Key Geographic Concepts:**
2187
+ - **Latitude and Longitude**: Precise coordinate system for global positioning
2188
+ - **Political Geography**: Administrative boundaries, governance, and territorial organization
2189
+ - **Physical Geography**: Topography, climate, natural resources, and environmental features
2190
+ - **Human Geography**: Population, culture, economic activities, and settlement patterns
2191
+
2192
+ For specific details about {location.title()}, I'd recommend consulting:
2193
+ - Current atlases and geographic databases
2194
+ - Official government geographic services
2195
+ - International geographic organizations
2196
+ - Academic geographic resources
2197
+
2198
+ Would you like me to help you find specific aspects like coordinates, population, or administrative details?"""
2199
 
2200
+ elif domain == 'science':
2201
+ return f"""**Scientific Analysis: {prompt[:50]}...**
2202
+
2203
+ This scientific topic involves systematic investigation and evidence-based understanding.
2204
+
2205
+ **Scientific Method Approach:**
2206
+ 1. **Observation**: Gathering empirical data through systematic observation
2207
+ 2. **Hypothesis Formation**: Developing testable explanations based on current knowledge
2208
+ 3. **Experimentation**: Designing controlled studies to test hypotheses
2209
+ 4. **Analysis**: Statistical and qualitative analysis of results
2210
+ 5. **Conclusion**: Drawing evidence-based conclusions and identifying areas for further research
2211
+
2212
+ **Key Scientific Principles:**
2213
+ - Reproducibility and peer review
2214
+ - Quantitative measurement and analysis
2215
+ - Controlled variables and experimental design
2216
+ - Statistical significance and error analysis
2217
+
2218
+ For more detailed scientific information, please specify:
2219
+ - The particular scientific field or discipline
2220
+ - Specific phenomena or processes of interest
2221
+ - Level of detail needed (introductory, intermediate, advanced)"""
2222
 
2223
+ else:
2224
+ return f"""**Response to: "{prompt[:60]}..."**
2225
+
2226
+ I understand you're asking about this topic. Based on your question, this appears to be in the {domain} domain.
2227
+
2228
+ **What I can help with:**
2229
+ - Detailed explanations of concepts and processes
2230
+ - Step-by-step guidance and instructions
2231
+ - Analysis and comparison of different approaches
2232
+ - Practical examples and applications
2233
+ - Current best practices and methodologies
2234
 
2235
+ **To provide the most helpful response, could you specify:**
2236
+ - What specific aspect you're most interested in
2237
+ - Your current level of knowledge on this topic
2238
+ - Any particular use case or application you have in mind
2239
+ - Whether you need theoretical background or practical implementation
2240
 
2241
+ Please feel free to ask a more specific question, and I'll provide detailed, actionable information tailored to your needs."""
2242
 
2243
  def _create_ultimate_routing_display(self, routing_info: Dict, generation_time: float, token_count: int) -> str:
2244
  """Create ultimate routing display with all advanced metrics"""