Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- config.json +32 -0
- config.py +44 -0
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": ["MambaSwarmForCausalLM"],
|
3 |
+
"auto_map": {
|
4 |
+
"AutoConfig": "configuration_mamba_swarm.MambaSwarmConfig",
|
5 |
+
"AutoModelForCausalLM": "modeling_mamba_swarm.MambaSwarmForCausalLM"
|
6 |
+
},
|
7 |
+
"model_type": "mamba_swarm",
|
8 |
+
"num_mamba_encoders": 5,
|
9 |
+
"max_mamba_encoders": 1000,
|
10 |
+
"d_model": 768,
|
11 |
+
"d_state": 16,
|
12 |
+
"d_conv": 4,
|
13 |
+
"expand_factor": 2,
|
14 |
+
"vocab_size": 50257,
|
15 |
+
"max_sequence_length": 2048,
|
16 |
+
"pad_token_id": 50256,
|
17 |
+
"bos_token_id": 50256,
|
18 |
+
"eos_token_id": 50256,
|
19 |
+
"tie_word_embeddings": false,
|
20 |
+
"torch_dtype": "float16",
|
21 |
+
"transformers_version": "4.36.0",
|
22 |
+
"use_cache": true,
|
23 |
+
"gating_config": {
|
24 |
+
"gating_type": "learned",
|
25 |
+
"top_k": 2,
|
26 |
+
"load_balancing_loss_coef": 0.01
|
27 |
+
},
|
28 |
+
"routing_config": {
|
29 |
+
"routing_strategy": "dynamic",
|
30 |
+
"aggregation_method": "weighted_average"
|
31 |
+
}
|
32 |
+
}
|
config.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# =============================================================================
|
2 |
+
# core/config.py
|
3 |
+
# =============================================================================
|
4 |
+
import torch
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import Dict, List, Optional
|
7 |
+
|
8 |
+
@dataclass
|
9 |
+
class MambaConfig:
|
10 |
+
# Model architecture
|
11 |
+
vocab_size: int = 50257
|
12 |
+
d_model: int = 1024
|
13 |
+
n_layers: int = 12
|
14 |
+
d_inner: int = 2048
|
15 |
+
d_state: int = 16
|
16 |
+
d_conv: int = 4
|
17 |
+
dt_rank: Optional[int] = None
|
18 |
+
bias: bool = False
|
19 |
+
conv_bias: bool = True
|
20 |
+
|
21 |
+
# Training
|
22 |
+
max_seq_len: int = 2048
|
23 |
+
batch_size: int = 8
|
24 |
+
learning_rate: float = 1e-4
|
25 |
+
weight_decay: float = 0.1
|
26 |
+
warmup_steps: int = 1000
|
27 |
+
max_steps: int = 100000
|
28 |
+
|
29 |
+
# Swarm specific
|
30 |
+
num_specialists: int = 100
|
31 |
+
specialist_domains: List[str] = None
|
32 |
+
shared_embedding: bool = True
|
33 |
+
hierarchical_sharing: bool = True
|
34 |
+
|
35 |
+
# Hardware
|
36 |
+
device: str = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
+
dtype: torch.dtype = torch.float16
|
38 |
+
|
39 |
+
def __post_init__(self):
|
40 |
+
if self.dt_rank is None:
|
41 |
+
self.dt_rank = max(16, self.d_model // 16)
|
42 |
+
if self.specialist_domains is None:
|
43 |
+
self.specialist_domains = [f"domain_{i}" for i in range(self.num_specialists)]
|
44 |
+
|