Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- routing/aggregator.py +134 -0
- routing/router.py +157 -0
- routing/tlm_manager.py +244 -0
routing/aggregator.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# =============================================================================
|
2 |
+
# routing/aggregator.py
|
3 |
+
# =============================================================================
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from typing import Dict, List, Tuple
|
8 |
+
from core.config import MambaConfig
|
9 |
+
|
10 |
+
class AttentionAggregator(nn.Module):
|
11 |
+
"""Attention-based aggregator for combining specialist outputs"""
|
12 |
+
|
13 |
+
def __init__(self, config: MambaConfig):
|
14 |
+
super().__init__()
|
15 |
+
self.config = config
|
16 |
+
self.d_model = config.d_model
|
17 |
+
self.num_specialists = config.num_specialists
|
18 |
+
|
19 |
+
# Attention mechanism for combining specialist outputs
|
20 |
+
self.specialist_attention = nn.MultiheadAttention(
|
21 |
+
embed_dim=self.d_model,
|
22 |
+
num_heads=8,
|
23 |
+
dropout=0.1,
|
24 |
+
batch_first=True
|
25 |
+
)
|
26 |
+
|
27 |
+
# Project specialist confidence scores
|
28 |
+
self.confidence_proj = nn.Linear(1, self.d_model)
|
29 |
+
|
30 |
+
# Output layers
|
31 |
+
self.output_layers = nn.Sequential(
|
32 |
+
nn.Linear(self.d_model, self.d_model * 2),
|
33 |
+
nn.ReLU(),
|
34 |
+
nn.Dropout(0.1),
|
35 |
+
nn.Linear(self.d_model * 2, self.d_model),
|
36 |
+
nn.LayerNorm(self.d_model)
|
37 |
+
)
|
38 |
+
|
39 |
+
# Final language modeling head
|
40 |
+
self.lm_head = nn.Linear(self.d_model, config.vocab_size, bias=False)
|
41 |
+
|
42 |
+
def forward(self, specialist_outputs: Dict[int, List[Dict]]) -> torch.Tensor:
|
43 |
+
"""
|
44 |
+
Aggregate specialist outputs into final representation
|
45 |
+
|
46 |
+
Args:
|
47 |
+
specialist_outputs: Dict mapping chunk_id to list of specialist results
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
aggregated_logits: [batch, seq_len, vocab_size]
|
51 |
+
"""
|
52 |
+
batch_outputs = []
|
53 |
+
|
54 |
+
for chunk_id in sorted(specialist_outputs.keys()):
|
55 |
+
chunk_results = specialist_outputs[chunk_id]
|
56 |
+
|
57 |
+
if not chunk_results:
|
58 |
+
continue
|
59 |
+
|
60 |
+
# Stack specialist encodings
|
61 |
+
encodings = []
|
62 |
+
confidences = []
|
63 |
+
|
64 |
+
for result in chunk_results:
|
65 |
+
if result is not None:
|
66 |
+
encodings.append(result['encoding'])
|
67 |
+
confidences.append(result['confidence'])
|
68 |
+
|
69 |
+
if not encodings:
|
70 |
+
continue
|
71 |
+
|
72 |
+
# Stack tensors
|
73 |
+
specialist_encodings = torch.stack(encodings) # [num_specialists, d_model]
|
74 |
+
confidence_scores = torch.tensor(confidences, device=encodings[0].device)
|
75 |
+
|
76 |
+
# Project confidence scores
|
77 |
+
confidence_embeddings = self.confidence_proj(
|
78 |
+
confidence_scores.unsqueeze(-1)
|
79 |
+
) # [num_specialists, d_model]
|
80 |
+
|
81 |
+
# Add confidence information to encodings
|
82 |
+
enhanced_encodings = specialist_encodings + confidence_embeddings
|
83 |
+
|
84 |
+
# Apply attention to combine specialist outputs
|
85 |
+
# Use self-attention to let specialists communicate
|
86 |
+
aggregated, _ = self.specialist_attention(
|
87 |
+
enhanced_encodings.unsqueeze(0), # [1, num_specialists, d_model]
|
88 |
+
enhanced_encodings.unsqueeze(0),
|
89 |
+
enhanced_encodings.unsqueeze(0)
|
90 |
+
)
|
91 |
+
|
92 |
+
# Pool the attended representations
|
93 |
+
chunk_representation = aggregated.mean(dim=1) # [1, d_model]
|
94 |
+
|
95 |
+
# Apply output layers
|
96 |
+
chunk_output = self.output_layers(chunk_representation)
|
97 |
+
batch_outputs.append(chunk_output)
|
98 |
+
|
99 |
+
if not batch_outputs:
|
100 |
+
# Return dummy output if no valid results
|
101 |
+
return torch.zeros(1, 1, self.config.vocab_size)
|
102 |
+
|
103 |
+
# Concatenate chunk outputs
|
104 |
+
final_representation = torch.cat(batch_outputs, dim=0) # [num_chunks, d_model]
|
105 |
+
|
106 |
+
# Generate logits
|
107 |
+
logits = self.lm_head(final_representation) # [num_chunks, vocab_size]
|
108 |
+
|
109 |
+
return logits.unsqueeze(0) # [1, num_chunks, vocab_size]
|
110 |
+
|
111 |
+
def generate_response(self, specialist_outputs: Dict[int, List[Dict]],
|
112 |
+
max_tokens: int = 100) -> str:
|
113 |
+
"""Generate text response from specialist outputs"""
|
114 |
+
# Get aggregated logits
|
115 |
+
logits = self.forward(specialist_outputs)
|
116 |
+
|
117 |
+
# Simple greedy decoding (can be improved with better generation)
|
118 |
+
generated_ids = []
|
119 |
+
current_logits = logits[0, -1, :] # Use last chunk's logits
|
120 |
+
|
121 |
+
for _ in range(max_tokens):
|
122 |
+
# Get next token
|
123 |
+
next_token = torch.argmax(current_logits, dim=-1)
|
124 |
+
generated_ids.append(next_token.item())
|
125 |
+
|
126 |
+
# Break on EOS token (assuming token 0 is EOS)
|
127 |
+
if next_token.item() == 0:
|
128 |
+
break
|
129 |
+
|
130 |
+
# Convert to text (placeholder - should use proper tokenizer)
|
131 |
+
# This is simplified - integrate with actual tokenizer for real text
|
132 |
+
response = f"Generated response with {len(generated_ids)} tokens"
|
133 |
+
|
134 |
+
return response
|
routing/router.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# =============================================================================
|
2 |
+
# routing/router.py
|
3 |
+
# =============================================================================
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import numpy as np
|
7 |
+
from typing import List, Dict, Tuple, Optional
|
8 |
+
from collections import defaultdict
|
9 |
+
import re
|
10 |
+
from utils.domain_configs import DomainConfigs
|
11 |
+
|
12 |
+
class TopicRouter(nn.Module):
|
13 |
+
def __init__(self, config, domain_configs: List[Dict]):
|
14 |
+
super().__init__()
|
15 |
+
self.config = config
|
16 |
+
self.domain_configs = domain_configs
|
17 |
+
self.num_specialists = len(domain_configs)
|
18 |
+
|
19 |
+
# Build keyword mappings
|
20 |
+
self.keyword_to_domains = defaultdict(list)
|
21 |
+
self.domain_keywords = {}
|
22 |
+
|
23 |
+
for domain in domain_configs:
|
24 |
+
domain_id = domain["id"]
|
25 |
+
keywords = domain["keywords"]
|
26 |
+
self.domain_keywords[domain_id] = keywords
|
27 |
+
|
28 |
+
for keyword in keywords:
|
29 |
+
self.keyword_to_domains[keyword.lower()].append(domain_id)
|
30 |
+
|
31 |
+
# Neural router for complex routing decisions
|
32 |
+
self.neural_router = nn.Sequential(
|
33 |
+
nn.Linear(config.d_model, 512),
|
34 |
+
nn.ReLU(),
|
35 |
+
nn.Dropout(0.1),
|
36 |
+
nn.Linear(512, 256),
|
37 |
+
nn.ReLU(),
|
38 |
+
nn.Linear(256, self.num_specialists)
|
39 |
+
)
|
40 |
+
|
41 |
+
# Text similarity threshold
|
42 |
+
self.similarity_threshold = 0.1
|
43 |
+
|
44 |
+
def keyword_based_routing(self, text: str) -> Dict[int, float]:
|
45 |
+
"""Route based on keyword matching"""
|
46 |
+
text_lower = text.lower()
|
47 |
+
domain_scores = defaultdict(float)
|
48 |
+
|
49 |
+
# Count keyword matches for each domain
|
50 |
+
for domain_id, keywords in self.domain_keywords.items():
|
51 |
+
for keyword in keywords:
|
52 |
+
if keyword in text_lower:
|
53 |
+
# Weight by keyword frequency and length
|
54 |
+
count = text_lower.count(keyword)
|
55 |
+
weight = len(keyword) / 10.0 # Longer keywords get higher weight
|
56 |
+
domain_scores[domain_id] += count * weight
|
57 |
+
|
58 |
+
# Normalize scores
|
59 |
+
total_score = sum(domain_scores.values())
|
60 |
+
if total_score > 0:
|
61 |
+
domain_scores = {k: v/total_score for k, v in domain_scores.items()}
|
62 |
+
|
63 |
+
return dict(domain_scores)
|
64 |
+
|
65 |
+
def neural_routing(self, embeddings: torch.Tensor) -> torch.Tensor:
|
66 |
+
"""Neural network based routing"""
|
67 |
+
# Use mean pooling of embeddings
|
68 |
+
pooled = embeddings.mean(dim=1) # [batch, d_model]
|
69 |
+
scores = self.neural_router(pooled) # [batch, num_specialists]
|
70 |
+
return torch.softmax(scores, dim=-1)
|
71 |
+
|
72 |
+
def route_text(self, text: str, embeddings: torch.Tensor = None,
|
73 |
+
max_specialists: int = 10) -> List[Tuple[int, float]]:
|
74 |
+
"""
|
75 |
+
Route text to appropriate specialists
|
76 |
+
|
77 |
+
Args:
|
78 |
+
text: Input text to route
|
79 |
+
embeddings: Text embeddings [1, seq_len, d_model]
|
80 |
+
max_specialists: Maximum number of specialists to activate
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
List of (specialist_id, confidence) tuples
|
84 |
+
"""
|
85 |
+
# Keyword-based routing
|
86 |
+
keyword_scores = self.keyword_based_routing(text)
|
87 |
+
|
88 |
+
# Neural routing (if embeddings provided)
|
89 |
+
neural_scores = {}
|
90 |
+
if embeddings is not None:
|
91 |
+
neural_weights = self.neural_routing(embeddings)
|
92 |
+
neural_scores = {i: float(neural_weights[0, i])
|
93 |
+
for i in range(self.num_specialists)}
|
94 |
+
|
95 |
+
# Combine scores
|
96 |
+
final_scores = {}
|
97 |
+
for i in range(self.num_specialists):
|
98 |
+
keyword_score = keyword_scores.get(i, 0.0)
|
99 |
+
neural_score = neural_scores.get(i, 0.0)
|
100 |
+
|
101 |
+
# Weighted combination
|
102 |
+
final_scores[i] = 0.7 * keyword_score + 0.3 * neural_score
|
103 |
+
|
104 |
+
# Sort by score and take top specialists
|
105 |
+
sorted_specialists = sorted(final_scores.items(),
|
106 |
+
key=lambda x: x[1],
|
107 |
+
reverse=True)
|
108 |
+
|
109 |
+
# Filter by threshold and limit
|
110 |
+
active_specialists = []
|
111 |
+
for specialist_id, score in sorted_specialists:
|
112 |
+
if score > self.similarity_threshold and len(active_specialists) < max_specialists:
|
113 |
+
active_specialists.append((specialist_id, score))
|
114 |
+
|
115 |
+
# Ensure at least one specialist is active
|
116 |
+
if not active_specialists and sorted_specialists:
|
117 |
+
active_specialists = [sorted_specialists[0]]
|
118 |
+
|
119 |
+
return active_specialists
|
120 |
+
|
121 |
+
def chunk_and_route(self, text: str, chunk_size: int = 512) -> List[Dict]:
|
122 |
+
"""
|
123 |
+
Split text into chunks and route each chunk
|
124 |
+
|
125 |
+
Returns:
|
126 |
+
List of dicts with 'text', 'specialists', 'chunk_id'
|
127 |
+
"""
|
128 |
+
# Simple sentence-based chunking
|
129 |
+
sentences = re.split(r'[.!?]+', text)
|
130 |
+
chunks = []
|
131 |
+
current_chunk = ""
|
132 |
+
chunk_id = 0
|
133 |
+
|
134 |
+
for sentence in sentences:
|
135 |
+
if len(current_chunk) + len(sentence) > chunk_size and current_chunk:
|
136 |
+
# Route current chunk
|
137 |
+
specialists = self.route_text(current_chunk)
|
138 |
+
chunks.append({
|
139 |
+
'text': current_chunk.strip(),
|
140 |
+
'specialists': specialists,
|
141 |
+
'chunk_id': chunk_id
|
142 |
+
})
|
143 |
+
current_chunk = sentence
|
144 |
+
chunk_id += 1
|
145 |
+
else:
|
146 |
+
current_chunk += sentence + ". "
|
147 |
+
|
148 |
+
# Handle last chunk
|
149 |
+
if current_chunk.strip():
|
150 |
+
specialists = self.route_text(current_chunk)
|
151 |
+
chunks.append({
|
152 |
+
'text': current_chunk.strip(),
|
153 |
+
'specialists': specialists,
|
154 |
+
'chunk_id': chunk_id
|
155 |
+
})
|
156 |
+
|
157 |
+
return chunks
|
routing/tlm_manager.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# =============================================================================
|
2 |
+
# routing/tlm_manager.py
|
3 |
+
# =============================================================================
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from typing import List, Dict, Tuple, Optional
|
7 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
8 |
+
import asyncio
|
9 |
+
from core.model import MambaModel
|
10 |
+
from core.config import MambaConfig
|
11 |
+
from utils.domain_configs import DomainConfigs
|
12 |
+
|
13 |
+
class SpecialistTLM:
|
14 |
+
"""Individual Specialist Mamba TLM"""
|
15 |
+
def __init__(self, specialist_id: int, config: MambaConfig, domain_info: Dict):
|
16 |
+
self.specialist_id = specialist_id
|
17 |
+
self.config = config
|
18 |
+
self.domain_info = domain_info
|
19 |
+
self.model = MambaModel(config)
|
20 |
+
self.device = config.device
|
21 |
+
|
22 |
+
# Move to device
|
23 |
+
self.model.to(self.device)
|
24 |
+
|
25 |
+
def encode(self, input_ids: torch.Tensor) -> torch.Tensor:
|
26 |
+
"""Encode input and return hidden states"""
|
27 |
+
self.model.eval()
|
28 |
+
with torch.no_grad():
|
29 |
+
# Get embeddings
|
30 |
+
x = self.model.embedding(input_ids)
|
31 |
+
|
32 |
+
# Pass through Mamba layers
|
33 |
+
for layer in self.model.layers:
|
34 |
+
x = layer(x)
|
35 |
+
|
36 |
+
# Apply final norm
|
37 |
+
x = self.model.norm_f(x)
|
38 |
+
|
39 |
+
# Return pooled representation
|
40 |
+
return x.mean(dim=1) # [batch, d_model]
|
41 |
+
|
42 |
+
def get_memory_usage(self) -> int:
|
43 |
+
"""Get model memory usage in bytes"""
|
44 |
+
return sum(p.numel() * p.element_size() for p in self.model.parameters())
|
45 |
+
|
46 |
+
class TLMManager:
|
47 |
+
"""Manages 100 specialist Mamba TLMs"""
|
48 |
+
|
49 |
+
def __init__(self, config: MambaConfig):
|
50 |
+
self.config = config
|
51 |
+
self.device = config.device
|
52 |
+
|
53 |
+
# Create domain configurations
|
54 |
+
self.domain_configs = DomainConfigs.get_domain_configs(config.num_specialists)
|
55 |
+
|
56 |
+
# Initialize specialists
|
57 |
+
self.specialists = {}
|
58 |
+
self._initialize_specialists()
|
59 |
+
|
60 |
+
# Shared components
|
61 |
+
self.shared_embedding = None
|
62 |
+
if config.shared_embedding:
|
63 |
+
self.shared_embedding = nn.Embedding(config.vocab_size, config.d_model)
|
64 |
+
self.shared_embedding.to(self.device)
|
65 |
+
|
66 |
+
# Thread pool for parallel processing
|
67 |
+
self.executor = ThreadPoolExecutor(max_workers=min(32, config.num_specialists))
|
68 |
+
|
69 |
+
def _initialize_specialists(self):
|
70 |
+
"""Initialize all specialist TLMs"""
|
71 |
+
print("Initializing 100 specialist TLMs...")
|
72 |
+
|
73 |
+
for domain_config in self.domain_configs:
|
74 |
+
specialist_id = domain_config["id"]
|
75 |
+
|
76 |
+
# Create specialist-specific config
|
77 |
+
specialist_config = DomainConfigs.create_specialist_config(
|
78 |
+
self.config, specialist_id
|
79 |
+
)
|
80 |
+
|
81 |
+
# Create specialist TLM
|
82 |
+
specialist = SpecialistTLM(
|
83 |
+
specialist_id=specialist_id,
|
84 |
+
config=specialist_config,
|
85 |
+
domain_info=domain_config
|
86 |
+
)
|
87 |
+
|
88 |
+
self.specialists[specialist_id] = specialist
|
89 |
+
|
90 |
+
if specialist_id % 10 == 0:
|
91 |
+
print(f"Initialized {specialist_id + 1}/100 specialists")
|
92 |
+
|
93 |
+
print("All specialists initialized!")
|
94 |
+
|
95 |
+
# Apply weight sharing if enabled
|
96 |
+
if self.config.hierarchical_sharing:
|
97 |
+
self._apply_weight_sharing()
|
98 |
+
|
99 |
+
def _apply_weight_sharing(self):
|
100 |
+
"""Apply hierarchical weight sharing between specialists"""
|
101 |
+
print("Applying hierarchical weight sharing...")
|
102 |
+
|
103 |
+
# Share embedding layers
|
104 |
+
if self.shared_embedding is not None:
|
105 |
+
for specialist in self.specialists.values():
|
106 |
+
specialist.model.embedding.token_embedding = self.shared_embedding
|
107 |
+
|
108 |
+
# Group specialists by domain similarity and share lower layers
|
109 |
+
domain_groups = self._group_domains_by_similarity()
|
110 |
+
|
111 |
+
for group in domain_groups:
|
112 |
+
if len(group) > 1:
|
113 |
+
# Use first specialist's weights as shared weights for the group
|
114 |
+
reference_specialist = self.specialists[group[0]]
|
115 |
+
shared_layers = reference_specialist.model.layers[:self.config.n_layers//2]
|
116 |
+
|
117 |
+
for specialist_id in group[1:]:
|
118 |
+
specialist = self.specialists[specialist_id]
|
119 |
+
for i, layer in enumerate(shared_layers):
|
120 |
+
specialist.model.layers[i] = layer
|
121 |
+
|
122 |
+
def _group_domains_by_similarity(self) -> List[List[int]]:
|
123 |
+
"""Group domains by similarity for weight sharing"""
|
124 |
+
# Simple grouping based on domain categories
|
125 |
+
groups = {
|
126 |
+
'stem': [],
|
127 |
+
'programming': [],
|
128 |
+
'language': [],
|
129 |
+
'business': [],
|
130 |
+
'other': []
|
131 |
+
}
|
132 |
+
|
133 |
+
for domain_config in self.domain_configs:
|
134 |
+
domain_name = domain_config["name"].lower()
|
135 |
+
specialist_id = domain_config["id"]
|
136 |
+
|
137 |
+
if any(x in domain_name for x in ['math', 'physics', 'chemistry', 'biology']):
|
138 |
+
groups['stem'].append(specialist_id)
|
139 |
+
elif any(x in domain_name for x in ['python', 'javascript', 'systems']):
|
140 |
+
groups['programming'].append(specialist_id)
|
141 |
+
elif any(x in domain_name for x in ['writing', 'translation']):
|
142 |
+
groups['language'].append(specialist_id)
|
143 |
+
elif any(x in domain_name for x in ['business', 'legal']):
|
144 |
+
groups['business'].append(specialist_id)
|
145 |
+
else:
|
146 |
+
groups['other'].append(specialist_id)
|
147 |
+
|
148 |
+
return [group for group in groups.values() if len(group) > 1]
|
149 |
+
|
150 |
+
def encode_parallel(self, routing_results: List[Dict]) -> List[Dict]:
|
151 |
+
"""
|
152 |
+
Encode chunks in parallel using appropriate specialists
|
153 |
+
|
154 |
+
Args:
|
155 |
+
routing_results: List of routing results from router
|
156 |
+
|
157 |
+
Returns:
|
158 |
+
List of encoded results with specialist outputs
|
159 |
+
"""
|
160 |
+
futures = []
|
161 |
+
|
162 |
+
for chunk_info in routing_results:
|
163 |
+
chunk_text = chunk_info['text']
|
164 |
+
specialists = chunk_info['specialists']
|
165 |
+
chunk_id = chunk_info['chunk_id']
|
166 |
+
|
167 |
+
# Create encoding task for each relevant specialist
|
168 |
+
for specialist_id, confidence in specialists:
|
169 |
+
if specialist_id in self.specialists:
|
170 |
+
future = self.executor.submit(
|
171 |
+
self._encode_chunk,
|
172 |
+
chunk_text,
|
173 |
+
specialist_id,
|
174 |
+
confidence,
|
175 |
+
chunk_id
|
176 |
+
)
|
177 |
+
futures.append(future)
|
178 |
+
|
179 |
+
# Collect results
|
180 |
+
encoded_results = []
|
181 |
+
for future in as_completed(futures):
|
182 |
+
try:
|
183 |
+
result = future.result()
|
184 |
+
encoded_results.append(result)
|
185 |
+
except Exception as e:
|
186 |
+
print(f"Error in specialist encoding: {e}")
|
187 |
+
|
188 |
+
# Group results by chunk_id
|
189 |
+
grouped_results = {}
|
190 |
+
for result in encoded_results:
|
191 |
+
chunk_id = result['chunk_id']
|
192 |
+
if chunk_id not in grouped_results:
|
193 |
+
grouped_results[chunk_id] = []
|
194 |
+
grouped_results[chunk_id].append(result)
|
195 |
+
|
196 |
+
return grouped_results
|
197 |
+
|
198 |
+
def _encode_chunk(self, text: str, specialist_id: int, confidence: float,
|
199 |
+
chunk_id: int) -> Dict:
|
200 |
+
"""Encode a single chunk with a specific specialist"""
|
201 |
+
try:
|
202 |
+
specialist = self.specialists[specialist_id]
|
203 |
+
|
204 |
+
# Tokenize text (simplified - should use proper tokenizer)
|
205 |
+
# This is a placeholder - integrate with actual tokenizer
|
206 |
+
input_ids = torch.randint(0, 1000, (1, 100)).to(self.device)
|
207 |
+
|
208 |
+
# Encode with specialist
|
209 |
+
encoding = specialist.encode(input_ids)
|
210 |
+
|
211 |
+
return {
|
212 |
+
'chunk_id': chunk_id,
|
213 |
+
'specialist_id': specialist_id,
|
214 |
+
'confidence': confidence,
|
215 |
+
'encoding': encoding,
|
216 |
+
'domain': specialist.domain_info['name']
|
217 |
+
}
|
218 |
+
|
219 |
+
except Exception as e:
|
220 |
+
print(f"Error encoding chunk {chunk_id} with specialist {specialist_id}: {e}")
|
221 |
+
return None
|
222 |
+
|
223 |
+
def get_active_specialists(self) -> List[int]:
|
224 |
+
"""Get list of currently active specialist IDs"""
|
225 |
+
return list(self.specialists.keys())
|
226 |
+
|
227 |
+
def get_specialist_info(self, specialist_id: int) -> Dict:
|
228 |
+
"""Get information about a specific specialist"""
|
229 |
+
if specialist_id in self.specialists:
|
230 |
+
specialist = self.specialists[specialist_id]
|
231 |
+
return {
|
232 |
+
'id': specialist_id,
|
233 |
+
'domain': specialist.domain_info,
|
234 |
+
'params': specialist.model.get_num_params(),
|
235 |
+
'memory': specialist.get_memory_usage()
|
236 |
+
}
|
237 |
+
return None
|
238 |
+
|
239 |
+
def get_total_parameters(self) -> int:
|
240 |
+
"""Get total parameters across all specialists"""
|
241 |
+
total = 0
|
242 |
+
for specialist in self.specialists.values():
|
243 |
+
total += specialist.model.get_num_params()
|
244 |
+
return total
|