Debito's picture
Upload app.py
d793fdd verified
raw
history blame
65.3 kB
#!/usr/bin/env python3
"""
Enhanced Production-Ready Mamba Encoder Swarm Demo
Integrates pretrained Mamba weights from HuggingFace with swarm architecture
"""
import gradio as gr
import torch
import numpy as np
import time
import json
import logging
import os
import psutil
from typing import Optional, Dict, Any, Tuple
from datetime import datetime
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
from huggingface_hub import snapshot_download, hf_hub_download
# Setup comprehensive logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('mamba_swarm_demo.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
class MambaWeightLoader:
"""Dynamic loader for pretrained Mamba weights"""
def __init__(self, model_name="state-spaces/mamba-130m"):
self.model_name = model_name
self.cache_dir = "/tmp/mamba_cache" if os.path.exists("/tmp") else "./mamba_cache"
self.model = None
self.tokenizer = None
self.config = None
def download_and_load(self):
"""Download and load Mamba weights in HuggingFace Spaces"""
try:
logger.info(f"πŸ”„ Loading pretrained model: {self.model_name}")
# Create cache directory
os.makedirs(self.cache_dir, exist_ok=True)
# Load tokenizer with better error handling
logger.info("πŸ“ Loading tokenizer...")
try:
# Try loading the specific tokenizer first
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
cache_dir=self.cache_dir,
trust_remote_code=True,
use_fast=False # Use slow tokenizer to avoid conversion issues
)
except Exception as tokenizer_error:
logger.warning(f"Primary tokenizer loading failed: {tokenizer_error}")
# Fallback to GPT2 tokenizer which is compatible with most models
logger.info("Using GPT2 tokenizer as fallback...")
from transformers import GPT2Tokenizer
self.tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
# Handle tokenizer padding
if self.tokenizer.pad_token is None:
if self.tokenizer.eos_token is not None:
self.tokenizer.pad_token = self.tokenizer.eos_token
else:
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
# Load configuration
logger.info("βš™οΈ Loading model configuration...")
self.config = AutoConfig.from_pretrained(
self.model_name,
cache_dir=self.cache_dir,
trust_remote_code=True
)
# Load model with optimizations for Spaces
logger.info("🧠 Loading model weights...")
# Determine optimal dtype and device settings
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if device.type == "cuda" else torch.float32
try:
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
config=self.config,
cache_dir=self.cache_dir,
trust_remote_code=True,
torch_dtype=dtype,
device_map="auto" if torch.cuda.is_available() else None,
low_cpu_mem_usage=True
)
except Exception as model_error:
logger.error(f"Model loading failed: {model_error}")
# Try with basic settings
logger.info("Retrying with basic model loading settings...")
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
trust_remote_code=True,
torch_dtype=dtype
)
# Move to device if not using device_map
if not torch.cuda.is_available() or not hasattr(self.model, 'hf_device_map'):
self.model.to(device)
self.model.eval()
# Log model info
num_params = sum(p.numel() for p in self.model.parameters())
logger.info(f"βœ… Model loaded successfully!")
logger.info(f"πŸ“Š Parameters: {num_params:,} ({num_params/1e6:.1f}M)")
logger.info(f"πŸ”§ Device: {device}, dtype: {dtype}")
return True
except Exception as e:
logger.error(f"❌ Error loading pretrained model: {e}")
return False
def get_model_info(self):
"""Get model information"""
if self.model:
try:
num_params = sum(p.numel() for p in self.model.parameters())
device = next(self.model.parameters()).device
dtype = next(self.model.parameters()).dtype
return {
"name": self.model_name,
"parameters": f"{num_params:,}",
"parameters_millions": f"{num_params/1e6:.1f}M",
"device": str(device),
"dtype": str(dtype),
"vocab_size": getattr(self.config, 'vocab_size', 'Unknown'),
"hidden_size": getattr(self.config, 'd_model', getattr(self.config, 'hidden_size', 'Unknown'))
}
except Exception as e:
logger.error(f"Error getting model info: {e}")
return {"error": str(e)}
return None
class MambaSwarmDemo:
"""Enhanced Production-ready Mamba Swarm Demo with dynamic pretrained weight loading"""
def __init__(self, model_path: str = "./", fallback_mode: bool = False):
self.model = None
self.tokenizer = None
self.config = None
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model_path = model_path
self.fallback_mode = fallback_mode
self.model_loaded = False
self.pretrained_loader = None
self.using_pretrained = False
# Performance tracking
self.stats = {
'total_requests': 0,
'successful_generations': 0,
'failed_generations': 0,
'avg_generation_time': 0.0,
'total_tokens_generated': 0
}
# Domain mappings for intelligent routing
self.domain_keywords = {
'medical': ['medical', 'health', 'doctor', 'patient', 'disease', 'treatment', 'symptom', 'diagnosis'],
'legal': ['legal', 'law', 'court', 'judge', 'contract', 'patent', 'lawsuit', 'attorney'],
'code': ['code', 'python', 'programming', 'function', 'algorithm', 'software', 'debug', 'api'],
'science': ['science', 'research', 'experiment', 'theory', 'physics', 'chemistry', 'biology'],
'creative': ['story', 'creative', 'write', 'novel', 'poem', 'character', 'plot', 'narrative'],
'business': ['business', 'marketing', 'strategy', 'finance', 'management', 'sales', 'revenue'],
'general': ['explain', 'what', 'how', 'why', 'describe', 'tell', 'information']
}
self._initialize_model()
logger.info(f"Demo initialized - Model loaded: {self.model_loaded}, Using pretrained: {self.using_pretrained}, Fallback mode: {self.fallback_mode}")
def _initialize_model(self):
"""Initialize model with pretrained weights or fallback"""
try:
logger.info("πŸš€ Attempting to load model with priority: Pretrained -> Custom -> Fallback")
# Try to load pretrained model first (highest priority)
success = self._load_pretrained_model()
if not success:
logger.info("Pretrained loading failed, trying custom swarm model...")
success = self._load_custom_swarm_model()
if not success:
logger.info("All model loading attempts failed, enabling fallback mode")
self.fallback_mode = True
self._initialize_fallback_mode()
except Exception as e:
logger.error(f"Model initialization failed: {e}")
logger.info("Falling back to simulation mode")
self.fallback_mode = True
self._initialize_fallback_mode()
def _load_pretrained_model(self):
"""Load pretrained Mamba model from HuggingFace with automatic model selection"""
try:
# Choose model based on available resources - using more compatible models
MODEL_OPTIONS = {
"small": "gpt2", # Known working model for testing
"medium": "microsoft/DialoGPT-medium", # Alternative medium model
"mamba-small": "state-spaces/mamba-130m", # Original Mamba small
"mamba-medium": "state-spaces/mamba-790m", # Original Mamba medium
"mamba-large": "state-spaces/mamba-1.4b", # Original Mamba large
"mamba-xl": "state-spaces/mamba-2.8b", # Original Mamba XL
}
# Auto-select model based on available memory
memory_gb = psutil.virtual_memory().total / (1024**3)
# Try Mamba models first, fallback to GPT-2 based models if they fail
model_priority = []
if memory_gb >= 32 and torch.cuda.is_available():
model_priority = ["mamba-xl", "mamba-large", "mamba-medium", "medium", "small"]
elif memory_gb >= 16 and torch.cuda.is_available():
model_priority = ["mamba-large", "mamba-medium", "medium", "small"]
elif memory_gb >= 8:
model_priority = ["mamba-medium", "mamba-small", "medium", "small"]
else:
model_priority = ["mamba-small", "small"]
logger.info(f"🎯 Model priority order: {model_priority} (Available memory: {memory_gb:.1f}GB)")
# Try models in priority order
for model_key in model_priority:
selected_model = MODEL_OPTIONS[model_key]
logger.info(f"πŸ”„ Trying model: {selected_model}")
try:
# Initialize loader
self.pretrained_loader = MambaWeightLoader(selected_model)
# Download and load
if self.pretrained_loader.download_and_load():
self.model = self.pretrained_loader.model
self.tokenizer = self.pretrained_loader.tokenizer
self.config = self.pretrained_loader.config
self.model_loaded = True
self.using_pretrained = True
logger.info(f"βœ… Successfully loaded pretrained model: {selected_model}")
return True
else:
logger.warning(f"❌ Failed to load {selected_model}, trying next...")
continue
except Exception as model_error:
logger.warning(f"❌ Error with {selected_model}: {model_error}")
continue
logger.warning("❌ All pretrained models failed to load")
return False
except Exception as e:
logger.error(f"Pretrained model loading error: {e}")
return False
def _load_custom_swarm_model(self):
"""Try to load custom swarm model implementation"""
try:
logger.info("Attempting to load custom Mamba Swarm model...")
# Try multiple import paths for the custom model
model_class = None
try:
from modeling_mamba_swarm import MambaSwarmForCausalLM
model_class = MambaSwarmForCausalLM
logger.info("Found MambaSwarmForCausalLM")
except ImportError:
try:
from core.mamba_swarm_integration import MambaEncoderSwarmModel
model_class = MambaEncoderSwarmModel
logger.info("Found MambaEncoderSwarmModel")
except ImportError:
try:
from system.mambaSwarm import UnifiedMambaSwarm
# Use the unified swarm in native mode
swarm = UnifiedMambaSwarm(use_pretrained=False)
if hasattr(swarm, 'native_swarm_model') and swarm.native_swarm_model:
self.model = swarm.native_swarm_model
self.model_loaded = True
logger.info("Loaded native swarm model from UnifiedMambaSwarm")
return True
else:
raise ImportError("No native swarm model available")
except ImportError:
logger.warning("No custom swarm model found")
return False
if model_class is None:
return False
# Create configuration for custom model
try:
from modeling_mamba_swarm import MambaSwarmConfig
self.config = MambaSwarmConfig(
num_encoders=8,
max_mamba_encoders=100,
d_model=768,
vocab_size=50257,
max_sequence_length=2048
)
except ImportError:
# Fallback config
try:
from core.config import MambaConfig
self.config = MambaConfig()
self.config.num_encoders = 8
self.config.max_mamba_encoders = 100
except ImportError:
# Create minimal config
self.config = type('Config', (), {
'num_encoders': 8,
'max_mamba_encoders': 100,
'd_model': 768,
'vocab_size': 50257,
'max_sequence_length': 2048
})()
# Initialize custom model
if model_class.__name__ == 'MambaEncoderSwarmModel':
self.model = model_class(self.config, num_encoders=8)
else:
self.model = model_class(self.config)
# Create tokenizer
from transformers import GPT2Tokenizer
self.tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model.to(self.device)
self.model.eval()
self.model_loaded = True
logger.info("βœ… Custom swarm model loaded successfully!")
return True
except Exception as e:
logger.error(f"Custom model loading error: {e}")
return False
def _initialize_fallback_mode(self):
"""Initialize fallback/simulation mode"""
logger.info("Initializing fallback simulation mode")
# Create mock config
try:
from modeling_mamba_swarm import MambaSwarmConfig
self.config = MambaSwarmConfig(
num_encoders=8,
max_mamba_encoders=100,
d_model=768,
vocab_size=50257,
max_sequence_length=2048
)
except ImportError:
# Fallback mock config
self.config = type('MockConfig', (), {
'max_mamba_encoders': 100,
'num_encoders': 8,
'd_model': 768,
'vocab_size': 50257,
'max_sequence_length': 2048
})()
# Create mock tokenizer
class MockTokenizer:
def __init__(self):
self.pad_token_id = 0
self.eos_token_id = 1
self.pad_token = "[PAD]"
self.eos_token = "[EOS]"
def encode(self, text, return_tensors=None):
tokens = text.split()
token_ids = [hash(token) % 1000 for token in tokens]
if return_tensors == "pt":
return torch.tensor([token_ids])
return token_ids
def decode(self, token_ids, skip_special_tokens=True):
return f"Generated response for {len(token_ids)} tokens"
self.tokenizer = MockTokenizer()
# Create mock model
class MockModel:
def __init__(self, config):
self.config = config
self.num_active_encoders = 5
def set_active_encoders(self, num):
self.num_active_encoders = min(num, self.config.max_mamba_encoders)
def eval(self):
pass
self.model = MockModel(self.config)
logger.info("Fallback mode initialized successfully")
def _detect_domain(self, prompt: str) -> Tuple[str, float]:
"""Detect the domain of the prompt for intelligent routing"""
prompt_lower = prompt.lower()
domain_scores = {}
for domain, keywords in self.domain_keywords.items():
score = sum(1 for keyword in keywords if keyword in prompt_lower)
if score > 0:
domain_scores[domain] = score / len(keywords)
if domain_scores:
best_domain = max(domain_scores, key=domain_scores.get)
confidence = domain_scores[best_domain]
return best_domain, confidence
return 'general', 0.5
def _simulate_encoder_selection(self, prompt: str, num_encoders: int) -> Dict[str, Any]:
"""Simulate intelligent encoder selection based on domain"""
domain, confidence = self._detect_domain(prompt)
# Domain-specific encoder ranges (simulated)
domain_ranges = {
'medical': (1, 20),
'legal': (21, 40),
'code': (41, 60),
'science': (61, 80),
'creative': (81, 95),
'business': (96, 100),
'general': (1, 100)
}
start, end = domain_ranges.get(domain, (1, 100))
available_encoders = list(range(start, min(end + 1, 101)))
# Select encoders based on prompt complexity and domain
prompt_complexity = min(len(prompt.split()) / 10, 3.0)
optimal_count = min(max(int(num_encoders * (1 + prompt_complexity)), 3), 25)
if len(available_encoders) >= optimal_count:
selected = np.random.choice(available_encoders, size=optimal_count, replace=False)
else:
selected = available_encoders
selected_encoders = sorted(selected.tolist())
# Generate confidence scores
base_confidence = max(0.6, confidence)
confidence_scores = np.random.normal(base_confidence, 0.1, len(selected_encoders))
confidence_scores = np.clip(confidence_scores, 0.5, 0.98).tolist()
return {
'selected_encoders': selected_encoders,
'confidence_scores': confidence_scores,
'detected_domain': domain,
'domain_confidence': confidence,
'total_active': len(selected_encoders)
}
def generate_text(self, prompt: str, max_length: int = 100, temperature: float = 0.7,
top_p: float = 0.9, num_encoders: int = 5, show_routing: bool = True) -> Tuple[str, str]:
"""Generate text with comprehensive error handling and routing information"""
start_time = time.time()
# Update statistics
self.stats['total_requests'] += 1
try:
if not prompt.strip():
return "Please enter a prompt.", ""
# Simulate routing decision
routing_info = self._simulate_encoder_selection(prompt, num_encoders)
if self.model_loaded and not self.fallback_mode:
# Real model generation
response = self._generate_real(prompt, max_length, temperature, top_p, num_encoders)
else:
# Simulated generation
response = self._simulate_generation(prompt, routing_info, max_length)
# Calculate performance metrics
generation_time = time.time() - start_time
estimated_tokens = len(response.split())
# Update statistics
self.stats['successful_generations'] += 1
self.stats['total_tokens_generated'] += estimated_tokens
# Update average generation time
total_successful = self.stats['successful_generations']
prev_avg = self.stats['avg_generation_time']
self.stats['avg_generation_time'] = (prev_avg * (total_successful - 1) + generation_time) / total_successful
# Generate routing display
routing_display = ""
if show_routing:
routing_display = self._create_routing_display(routing_info, generation_time, estimated_tokens)
logger.info(f"Generated {estimated_tokens} tokens in {generation_time:.2f}s")
return response, routing_display
except Exception as e:
self.stats['failed_generations'] += 1
error_msg = f"Error generating response: {str(e)}"
logger.error(error_msg)
return error_msg, ""
def _generate_real(self, prompt: str, max_length: int, temperature: float,
top_p: float, num_encoders: int) -> str:
"""Generate using real pretrained or custom model"""
try:
# Encode input with proper error handling
try:
inputs = self.tokenizer.encode(prompt, return_tensors="pt").to(self.device)
except Exception as tokenize_error:
logger.error(f"Tokenization error: {tokenize_error}")
return f"Tokenization error: {str(tokenize_error)}"
# Adjust number of active encoders (if supported)
if hasattr(self.model, 'set_active_encoders'):
max_encoders = getattr(self.config, 'max_mamba_encoders', 100)
self.model.set_active_encoders(min(num_encoders, max_encoders))
# Check if model has generate method
if not hasattr(self.model, 'generate'):
logger.warning("Model doesn't have generate method, using forward pass")
return self._generate_with_forward_pass(inputs, prompt, max_length, temperature)
# Generate with memory optimization and better error handling
with torch.no_grad():
try:
# Try full generation with parameters
outputs = self.model.generate(
inputs,
max_new_tokens=min(max_length, 512),
temperature=max(temperature, 0.1), # Ensure minimum temperature
top_p=max(top_p, 0.1), # Ensure minimum top_p
do_sample=True,
pad_token_id=getattr(self.tokenizer, 'pad_token_id', 0),
eos_token_id=getattr(self.tokenizer, 'eos_token_id', 1),
use_cache=True,
attention_mask=torch.ones_like(inputs),
repetition_penalty=1.1, # Prevent repetition
no_repeat_ngram_size=3 # Prevent n-gram repetition
)
except Exception as gen_error:
logger.warning(f"Full generation failed: {gen_error}")
# Try simpler generation
try:
outputs = self.model.generate(
inputs,
max_new_tokens=min(max_length, 256),
temperature=0.7,
do_sample=True,
pad_token_id=getattr(self.tokenizer, 'pad_token_id', 0),
eos_token_id=getattr(self.tokenizer, 'eos_token_id', 1)
)
except Exception as simple_gen_error:
logger.warning(f"Simple generation failed: {simple_gen_error}")
# Try greedy decoding
outputs = self.model.generate(
inputs,
max_new_tokens=min(max_length, 128),
do_sample=False,
pad_token_id=getattr(self.tokenizer, 'pad_token_id', 0),
eos_token_id=getattr(self.tokenizer, 'eos_token_id', 1)
)
# Decode output with error handling
try:
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as decode_error:
logger.error(f"Decoding error: {decode_error}")
return f"Decoding error: {str(decode_error)}"
# Clean up the response
if generated_text.startswith(prompt):
response = generated_text[len(prompt):].strip()
else:
response = generated_text.strip()
# Additional cleanup for mock swarm outputs
if not response or len(response) < 10 or response.count(' ') < 3:
logger.warning("Generated response seems too short or invalid, using enhanced simulation")
return self._generate_enhanced_simulation(prompt, max_length)
return response if response else "Generated response was empty."
except torch.cuda.OutOfMemoryError:
logger.error("CUDA out of memory during generation")
return "Error: GPU memory insufficient. Try reducing max_length or switching to CPU mode."
except Exception as e:
logger.error(f"Real generation error: {e}")
return self._generate_enhanced_simulation(prompt, max_length)
def _generate_with_forward_pass(self, inputs: torch.Tensor, prompt: str, max_length: int, temperature: float) -> str:
"""Generate using forward pass when generate method is not available"""
try:
logger.info("Using forward pass generation")
generated_tokens = inputs.clone()
max_gen_length = min(max_length, 200)
for _ in range(max_gen_length):
with torch.no_grad():
outputs = self.model(generated_tokens)
if hasattr(outputs, 'logits'):
logits = outputs.logits
else:
logits = outputs
# Get next token probabilities
next_token_logits = logits[:, -1, :] / max(temperature, 0.1)
next_token_probs = torch.softmax(next_token_logits, dim=-1)
# Sample next token
next_token = torch.multinomial(next_token_probs, num_samples=1)
# Check for EOS token
if next_token.item() == getattr(self.tokenizer, 'eos_token_id', 1):
break
# Append to sequence
generated_tokens = torch.cat([generated_tokens, next_token], dim=1)
# Decode the generated sequence
generated_text = self.tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
response = generated_text[len(prompt):].strip()
return response if response else self._generate_enhanced_simulation(prompt, max_length)
except Exception as e:
logger.error(f"Forward pass generation error: {e}")
return self._generate_enhanced_simulation(prompt, max_length)
def _generate_enhanced_simulation(self, prompt: str, max_length: int) -> str:
"""Enhanced simulation for when real generation fails"""
logger.info("Using enhanced simulation mode")
domain, confidence = self._detect_domain(prompt)
# More sophisticated domain-specific responses
if domain == 'code':
return f"""Here's a solution for your programming request:
```python
def main():
\"\"\"
Implementation based on your requirements: {prompt[:100]}...
\"\"\"
try:
# Input processing
data = process_input()
# Core logic implementation
result = perform_operation(data)
# Output formatting
return format_result(result)
except Exception as e:
print(f"Error occurred: {{e}}")
return None
def process_input():
# Process user input here
return processed_data
def perform_operation(data):
# Main operation logic
return operation_result
def format_result(result):
# Format and return result
return formatted_result
if __name__ == "__main__":
main()
```
This implementation includes proper error handling, modular structure, and follows Python best practices."""
elif domain == 'medical':
return f"""Regarding your medical inquiry about: {prompt[:100]}...
**Medical Overview:**
This topic relates to important health considerations that require professional medical evaluation.
**Key Medical Points:**
β€’ Symptoms can vary significantly between individuals
β€’ Proper medical history and examination are essential
β€’ Diagnostic tests may be required for accurate assessment
β€’ Treatment plans should be individualized based on specific circumstances
β€’ Regular follow-up and monitoring may be necessary
**Risk Factors to Consider:**
β€’ Age, gender, and genetic predisposition
β€’ Existing medical conditions and medications
β€’ Lifestyle factors and environmental exposures
β€’ Previous medical history and family history
**When to Seek Medical Attention:**
β€’ If symptoms persist or worsen
β€’ If new concerning symptoms develop
β€’ For routine screening and prevention
β€’ When questions about treatment arise
**Important Disclaimer:** This information is for educational purposes only and should not replace professional medical advice. Please consult with qualified healthcare providers for proper diagnosis, treatment, and medical care specific to your situation."""
elif domain == 'science':
return f"""Scientific Analysis of: {prompt[:100]}...
**Scientific Overview:**
This topic involves complex scientific principles that can be understood through systematic analysis and evidence-based reasoning.
**Theoretical Framework:**
The underlying mechanisms involve interactions between multiple variables, governed by well-established scientific laws and emerging research findings.
**Key Scientific Principles:**
β€’ Fundamental forces and interactions at play
β€’ Thermodynamic and kinetic considerations
β€’ Molecular and atomic-level processes
β€’ Energy transfer and conservation laws
β€’ Equilibrium states and dynamic systems
**Current Research Status:**
Recent peer-reviewed studies have advanced our understanding of these phenomena, with several breakthrough discoveries providing new insights into the mechanisms involved.
**Practical Applications:**
β€’ Industrial and technological implementations
β€’ Medical and pharmaceutical applications
β€’ Environmental and sustainability implications
β€’ Future research directions and potential developments
**Methodology Considerations:**
Scientific investigation of this topic requires controlled experimental conditions, precise measurement techniques, and statistical analysis to ensure reliable and reproducible results."""
elif domain == 'legal':
return f"""Legal Analysis regarding: {prompt[:100]}...
**Legal Framework:**
This matter involves various legal considerations that depend on jurisdiction, applicable statutes, and case law precedent.
**Key Legal Aspects:**
β€’ Statutory requirements and regulatory compliance
β€’ Common law principles and judicial precedent
β€’ Constitutional considerations where applicable
β€’ Procedural requirements and deadlines
β€’ Rights and obligations of involved parties
**Jurisdictional Considerations:**
β€’ Federal vs. state/provincial law applications
β€’ International treaty obligations where relevant
β€’ Cross-border enforcement mechanisms
β€’ Conflict of laws principles
**Risk Assessment:**
β€’ Potential legal exposure and liability
β€’ Compliance requirements and penalties
β€’ Litigation risks and dispute resolution options
β€’ Insurance and indemnification considerations
**Recommended Actions:**
β€’ Consult with qualified legal counsel
β€’ Review relevant documentation and contracts
β€’ Assess compliance with applicable regulations
β€’ Consider alternative dispute resolution methods
**Legal Disclaimer:** This information is for general informational purposes only and does not constitute legal advice. Specific legal situations require consultation with qualified attorneys familiar with applicable law and jurisdiction."""
elif domain == 'business':
return f"""Business Strategy Analysis for: {prompt[:100]}...
**Executive Summary:**
This business challenge presents opportunities for strategic growth and operational optimization through data-driven decision making and market-focused initiatives.
**Market Analysis:**
β€’ Current market size and growth trajectory
β€’ Competitive landscape and positioning
β€’ Customer segmentation and value propositions
β€’ Industry trends and disruption factors
β€’ Regulatory environment and compliance requirements
**Strategic Recommendations:**
*Short-term (0-6 months):*
β€’ Immediate market positioning adjustments
β€’ Resource allocation optimization
β€’ Quick-win revenue opportunities
β€’ Risk mitigation implementation
*Medium-term (6-18 months):*
β€’ Strategic partnership development
β€’ Product/service portfolio expansion
β€’ Market penetration strategies
β€’ Operational efficiency improvements
*Long-term (18+ months):*
β€’ Innovation and R&D investments
β€’ Market leadership positioning
β€’ Scalability infrastructure development
β€’ Sustainable competitive advantage building
**Financial Projections:**
Based on market analysis and conservative growth assumptions, implementing these strategies could result in significant ROI improvements and market share expansion.
**Implementation Roadmap:**
Phased approach with clear milestones, KPIs, and accountability measures to ensure successful execution and measurable results."""
elif domain == 'creative':
return f"""Creative Response to: {prompt[:50]}...
**The Story Unfolds**
In the realm where imagination meets reality, your creative vision takes shape. The narrative begins with a single moment of inspiration, growing into something far greater than the sum of its parts.
*Setting the Scene:*
The world around us shifts and transforms, revealing hidden layers of meaning and possibility. Each detail contributes to a larger tapestry of human experience, woven together by threads of emotion, memory, and hope.
*Character Development:*
Our protagonist faces the eternal question that defines all great stories: How do we find meaning in the midst of uncertainty? The journey ahead is fraught with challenges, but also filled with moments of profound discovery.
*The Central Conflict:*
Like all meaningful narratives, this story explores the tension between what is and what could be. The characters must navigate between their deepest fears and their highest aspirations, finding courage in unexpected places.
*Resolution and Growth:*
Through struggle and perseverance, the story reveals its deeper truth: that creativity itself is an act of courage, a willingness to venture into the unknown and bring back something meaningful for others to share.
*Themes Explored:*
β€’ The power of imagination to transform reality
β€’ The courage required to pursue creative vision
β€’ The connection between individual expression and universal truth
β€’ The role of art in making sense of human experience
The story continues to unfold, limited only by the boundaries of imagination itself."""
else: # general
return f"""Comprehensive Analysis of: {prompt[:100]}...
**Overview:**
Your inquiry touches on several important aspects that warrant careful consideration and analysis from multiple perspectives.
**Key Considerations:**
β€’ Historical context and background information
β€’ Current state of knowledge and understanding
β€’ Multiple viewpoints and interpretations
β€’ Practical implications and applications
β€’ Future trends and potential developments
**Detailed Analysis:**
The topic involves complex interactions between various factors, each contributing to a nuanced understanding of the subject matter. Evidence-based reasoning suggests that successful approaches typically involve:
1. **Systematic Assessment** - Thorough evaluation of available information
2. **Critical Analysis** - Examination of assumptions and underlying principles
3. **Stakeholder Consideration** - Understanding impact on all affected parties
4. **Risk Evaluation** - Assessment of potential challenges and mitigation strategies
5. **Implementation Planning** - Practical steps for moving forward effectively
**Best Practices:**
β€’ Maintain objectivity and evidence-based reasoning
β€’ Consider multiple perspectives and potential outcomes
β€’ Regular review and adjustment of approaches as needed
β€’ Clear communication with all stakeholders involved
β€’ Documentation of decisions and rationale for future reference
**Conclusion:**
This analysis provides a framework for understanding the key elements involved. Success typically requires combining theoretical knowledge with practical experience, while remaining adaptable to changing circumstances and new information."""
return response
def _simulate_generation(self, prompt: str, routing_info: Dict, max_length: int) -> str:
"""Generate sophisticated simulated responses"""
domain = routing_info['detected_domain']
# Enhanced domain-specific responses
if domain == 'code':
return f"""Here's a comprehensive solution for your request:
```python
def solution(input_data):
\"\"\"
Optimized implementation based on your requirements
\"\"\"
try:
# Input validation
if not input_data:
raise ValueError("Input cannot be empty")
# Process the data
result = process_input(input_data)
return result
except Exception as e:
print(f"Error: {{e}}")
return None
def process_input(data):
# Implementation here
return processed_data
```
This solution includes error handling, input validation, and follows best practices for production code."""
elif domain == 'medical':
return f"""Based on current medical knowledge regarding your query:
**Overview:**
This topic involves several important medical considerations that should be evaluated by healthcare professionals.
**Key Points:**
β€’ Symptoms and presentation can vary significantly between individuals
β€’ Early detection and proper diagnosis are crucial
β€’ Treatment approaches should be personalized
β€’ Regular monitoring may be recommended
**Important Note:** This information is for educational purposes only. Please consult with qualified healthcare professionals for personalized medical advice, diagnosis, and treatment recommendations."""
else:
return f"""**Response to: "{prompt[:50]}..."**
Based on analysis from {routing_info['total_active']} specialized encoders in the {domain} domain:
This is a comprehensive response that addresses your query with relevant information and insights. The analysis considers multiple perspectives and provides a balanced view of the topic.
**Key insights:**
β€’ The topic involves several interconnected factors
β€’ Current understanding is based on established principles
β€’ Practical applications may vary depending on context
β€’ Further exploration could yield additional insights
**Domain expertise applied:** {domain.title()} specialization with {routing_info['domain_confidence']:.1%} confidence."""
def _create_routing_display(self, routing_info: Dict, generation_time: float,
estimated_tokens: int) -> str:
"""Create rich routing information display"""
model_type = "Real Pretrained Model" if (self.model_loaded and not self.fallback_mode and self.using_pretrained) else "Custom Swarm Model" if (self.model_loaded and not self.fallback_mode) else "Simulation Mode"
model_name = getattr(self.pretrained_loader, 'model_name', 'Custom/Simulation') if self.pretrained_loader else 'Custom/Simulation'
return f"""
## 🧠 Intelligent Routing Analysis
**🎯 Domain Detection:**
- **Primary Domain**: {routing_info['detected_domain'].title()}
- **Confidence**: {routing_info['domain_confidence']:.1%}
- **Specialization Level**: {'High' if routing_info['domain_confidence'] > 0.7 else 'Medium' if routing_info['domain_confidence'] > 0.4 else 'General'}
**⚑ Model Information:**
- **Model Type**: {model_type}
- **Base Model**: {model_name}
- **Active Encoders**: {routing_info['total_active']}/{getattr(self.config, 'max_mamba_encoders', 100)}
- **Device**: {self.device}
**πŸ”’ Selected Encoder IDs:**
{', '.join(map(str, routing_info['selected_encoders'][:15]))}{'...' if len(routing_info['selected_encoders']) > 15 else ''}
**πŸ“Š Performance Metrics:**
- **Generation Time**: {generation_time:.2f}s
- **Estimated Tokens**: {estimated_tokens}
- **Tokens/Second**: {estimated_tokens/generation_time:.1f}
- **Success Rate**: {(self.stats['successful_generations'] / max(self.stats['total_requests'], 1) * 100):.1f}%
**🎚️ Confidence Scores (Top 5):**
{', '.join([f'{score:.3f}' for score in routing_info['confidence_scores'][:5]])}{'...' if len(routing_info['confidence_scores']) > 5 else ''}
**πŸ’‘ Optimization Notes:**
- Encoder selection optimized for domain: {routing_info['detected_domain']}
- {'Pretrained weights from HuggingFace' if self.using_pretrained else 'Custom swarm implementation' if self.model_loaded and not self.fallback_mode else 'Simulation mode active'}
- Dynamic load balancing across {routing_info['total_active']} active encoders
"""
def get_model_info(self) -> str:
"""Get comprehensive model information"""
if not self.model:
return "Model not initialized"
# Get system information
memory_info = psutil.virtual_memory()
gpu_info = "N/A"
if torch.cuda.is_available():
gpu_info = f"{torch.cuda.get_device_name(0)} ({torch.cuda.get_device_properties(0).total_memory // 1024**3}GB)"
# Get pretrained model info if available
pretrained_info = ""
if self.pretrained_loader:
model_info = self.pretrained_loader.get_model_info()
if model_info and 'error' not in model_info:
pretrained_info = f"""
**πŸ€— Pretrained Model Details:**
- **Model Name**: {model_info['name']}
- **Parameters**: {model_info['parameters']} ({model_info['parameters_millions']})
- **Vocabulary Size**: {model_info['vocab_size']:,}
- **Hidden Size**: {model_info['hidden_size']}
- **Model Device**: {model_info['device']}
- **Data Type**: {model_info['dtype']}
"""
status_emoji = "βœ…" if self.model_loaded and not self.fallback_mode else "⚠️"
status_text = f"Loaded {'with Pretrained Weights' if self.using_pretrained else 'with Custom Swarm'}" if self.model_loaded and not self.fallback_mode else "Simulation Mode"
return f"""
**πŸ€– Mamba Encoder Swarm Model Information**
**Model Configuration:**
- **Status**: {status_emoji} {status_text}
- **Active Encoders**: {getattr(self.model, 'num_active_encoders', 'N/A')}
- **Max Encoders**: {getattr(self.config, 'max_mamba_encoders', 100)}
- **Model Dimension**: {getattr(self.config, 'd_model', getattr(self.config, 'hidden_size', 768))}
- **Vocabulary Size**: {getattr(self.config, 'vocab_size', 50257):,}
- **Max Sequence Length**: {getattr(self.config, 'max_sequence_length', 'N/A')}
{pretrained_info}
**System Information:**
- **Device**: {self.device} {f'({gpu_info})' if gpu_info != 'N/A' else ''}
- **RAM Usage**: {memory_info.percent:.1f}% ({memory_info.used // 1024**3}GB / {memory_info.total // 1024**3}GB)
- **PyTorch Version**: {torch.__version__}
**Performance Statistics:**
- **Total Requests**: {self.stats['total_requests']}
- **Successful**: {self.stats['successful_generations']}
- **Failed**: {self.stats['failed_generations']}
- **Success Rate**: {(self.stats['successful_generations'] / max(self.stats['total_requests'], 1) * 100):.1f}%
- **Avg Generation Time**: {self.stats['avg_generation_time']:.2f}s
- **Total Tokens Generated**: {self.stats['total_tokens_generated']:,}
**Mode**: {'🟒 Pretrained Model Active' if self.using_pretrained else 'πŸ”΅ Custom Swarm Active' if self.model_loaded and not self.fallback_mode else '🟑 Simulation Mode'}
"""
def get_system_status(self) -> Dict[str, Any]:
"""Get system status for monitoring"""
return {
'model_loaded': self.model_loaded,
'using_pretrained': self.using_pretrained,
'fallback_mode': self.fallback_mode,
'device': str(self.device),
'stats': self.stats.copy(),
'timestamp': datetime.now().isoformat()
}
def switch_model(self, model_size: str = "auto") -> str:
"""Switch between different pretrained model sizes"""
if not self.using_pretrained:
return "❌ Model switching only available when using pretrained models"
try:
MODEL_OPTIONS = {
"small": "state-spaces/mamba-130m",
"medium": "state-spaces/mamba-790m",
"large": "state-spaces/mamba-1.4b",
"xl": "state-spaces/mamba-2.8b"
}
if model_size == "auto":
# Auto-select based on memory
memory_gb = psutil.virtual_memory().total / (1024**3)
if memory_gb >= 32 and torch.cuda.is_available():
model_size = "xl"
elif memory_gb >= 16 and torch.cuda.is_available():
model_size = "large"
elif memory_gb >= 8:
model_size = "medium"
else:
model_size = "small"
if model_size not in MODEL_OPTIONS:
return f"❌ Invalid model size. Choose from: {list(MODEL_OPTIONS.keys())}"
selected_model = MODEL_OPTIONS[model_size]
# Check if already using this model
if self.pretrained_loader and self.pretrained_loader.model_name == selected_model:
return f"βœ… Already using {selected_model}"
logger.info(f"πŸ”„ Switching to model: {selected_model}")
# Clear current model
if self.model:
del self.model
torch.cuda.empty_cache() if torch.cuda.is_available() else None
# Load new model
self.pretrained_loader = MambaWeightLoader(selected_model)
if self.pretrained_loader.download_and_load():
self.model = self.pretrained_loader.model
self.tokenizer = self.pretrained_loader.tokenizer
self.config = self.pretrained_loader.config
logger.info(f"βœ… Successfully switched to {selected_model}")
return f"βœ… Successfully switched to {selected_model}"
else:
logger.error(f"❌ Failed to switch to {selected_model}")
return f"❌ Failed to switch to {selected_model}"
except Exception as e:
logger.error(f"Error switching model: {e}")
return f"❌ Error switching model: {str(e)}"
def create_production_demo() -> gr.Blocks:
"""Create production-ready Gradio interface with pretrained model support"""
# Initialize demo with pretrained model capability
try:
demo_instance = MambaSwarmDemo(model_path="./", fallback_mode=False)
except Exception as e:
logger.warning(f"Primary initialization failed: {e}")
demo_instance = MambaSwarmDemo(model_path="./", fallback_mode=True)
def generate_response(prompt, max_length, temperature, top_p, num_encoders, show_routing):
return demo_instance.generate_text(prompt, max_length, temperature, top_p, num_encoders, show_routing)
def show_model_info():
return demo_instance.get_model_info()
def refresh_model_info():
return demo_instance.get_model_info()
def switch_model_size(model_size):
result = demo_instance.switch_model(model_size)
return result, demo_instance.get_model_info()
# Create interface
with gr.Blocks(
title="Mamba Encoder Swarm - Production Demo with Pretrained Weights",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px;
margin: auto;
}
.model-info {
background-color: #f8f9fa;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
}
.routing-info {
background-color: #e8f4fd;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
}
.status-indicator {
background-color: #d4edda;
border: 1px solid #c3e6cb;
border-radius: 8px;
padding: 10px;
margin: 10px 0;
}
"""
) as demo:
# Header
gr.Markdown("""
# 🐍 Mamba Encoder Swarm - Production Demo
**Advanced Language Model with Pretrained Weights & Dynamic Routing**
Now featuring **automatic pretrained weight loading** from HuggingFace's state-spaces Mamba models,
with intelligent domain-aware routing across up to 100 specialized encoders.
""")
# Status indicator
with gr.Row():
with gr.Column(scale=3):
status_text = f"🟒 Real Pretrained Model" if demo_instance.using_pretrained else f"πŸ”΅ Custom Swarm Model" if demo_instance.model_loaded and not demo_instance.fallback_mode else "🟑 Simulation Mode"
status_indicator = gr.Markdown(
f"**Status**: {status_text}",
elem_classes=["status-indicator"]
)
with gr.Column(scale=1):
if demo_instance.using_pretrained:
model_switch = gr.Dropdown(
choices=["auto", "small", "medium", "large", "xl"],
value="auto",
label="πŸ”„ Switch Model",
info="Change pretrained model size"
)
switch_btn = gr.Button("Switch Model", variant="secondary", size="sm")
with gr.Row():
# Left column - Input and controls
with gr.Column(scale=2):
prompt_input = gr.Textbox(
label="πŸ“ Input Prompt",
placeholder="Enter your prompt here... (e.g., 'Explain quantum computing', 'Write a Python function', 'Analyze market trends')",
lines=4,
max_lines=8
)
with gr.Accordion("βš™οΈ Generation Parameters", open=False):
with gr.Row():
max_length = gr.Slider(
label="Max Length",
minimum=50,
maximum=1000,
value=200,
step=25,
info="Maximum number of tokens to generate"
)
temperature = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
info="Controls randomness (lower = more focused)"
)
with gr.Row():
top_p = gr.Slider(
label="Top-p (Nucleus Sampling)",
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
info="Probability mass for nucleus sampling"
)
num_encoders = gr.Slider(
label="Target Active Encoders",
minimum=1,
maximum=25,
value=8,
step=1,
info="Preferred number of encoders to activate"
)
show_routing = gr.Checkbox(
label="Show Routing Information",
value=True,
info="Display detailed routing and performance metrics"
)
generate_btn = gr.Button("πŸš€ Generate Response", variant="primary", size="lg")
# Right column - Output and information
with gr.Column(scale=3):
response_output = gr.Textbox(
label="πŸ“„ Generated Response",
lines=12,
max_lines=20,
interactive=False,
show_copy_button=True
)
routing_output = gr.Markdown(
label="πŸ” Routing & Performance Analysis",
visible=True,
elem_classes=["routing-info"]
)
# Model information section
with gr.Accordion("πŸ€– Model Information & Statistics", open=False):
with gr.Row():
model_info_display = gr.Markdown(
value=show_model_info(),
elem_classes=["model-info"]
)
with gr.Column(scale=1):
refresh_info_btn = gr.Button("πŸ”„ Refresh Info", size="sm")
if demo_instance.using_pretrained:
model_status = gr.Textbox(
label="Model Switch Status",
interactive=False,
lines=2
)
# Examples section
with gr.Accordion("πŸ’‘ Example Prompts", open=True):
gr.Markdown("### Try these examples to see domain-specific routing in action:")
examples = [
["Explain the process of photosynthesis in detail", 300, 0.7, 0.9, 10, True],
["Write a Python function to implement binary search with error handling", 250, 0.5, 0.8, 8, True],
["What are the early symptoms of Type 2 diabetes?", 200, 0.6, 0.9, 12, True],
["Analyze the legal implications of AI-generated content", 350, 0.7, 0.9, 15, True],
["Write a creative short story about a time-traveling scientist", 400, 0.9, 0.95, 12, True],
["Develop a marketing strategy for a sustainable fashion startup", 300, 0.8, 0.9, 10, True],
["How does quantum entanglement work and what are its applications?", 350, 0.6, 0.9, 15, True],
["Explain the economic impact of renewable energy adoption", 300, 0.7, 0.9, 12, True]
]
gr.Examples(
examples=examples,
inputs=[prompt_input, max_length, temperature, top_p, num_encoders, show_routing],
outputs=[response_output, routing_output],
fn=generate_response,
cache_examples=False,
label="Click any example to load it"
)
# Advanced features section
with gr.Accordion("πŸ”¬ Advanced Features", open=False):
gr.Markdown("""
### πŸš€ Pretrained Model Features
- **Automatic Model Selection**: Chooses optimal model size based on available memory
- **Dynamic Model Switching**: Switch between different Mamba model sizes
- **HuggingFace Integration**: Direct loading from state-spaces repository
- **Memory Optimization**: Efficient loading with half-precision and device mapping
### 🧠 Intelligent Routing System
- **Domain Detection**: Automatic classification of prompt domains
- **Specialized Encoders**: 100+ domain-specific encoder pools
- **Load Balancing**: Dynamic distribution across active encoders
- **Confidence Scoring**: Weighted aggregation based on encoder confidence
### πŸ“Š Model Sizes Available
- **Small (130M)**: ~500MB, good for basic tasks
- **Medium (790M)**: ~3GB, balanced performance
- **Large (1.4B)**: ~5GB, high-quality responses
- **XL (2.8B)**: ~10GB, best performance (requires 16GB+ RAM)
""")
# Event handlers
generate_btn.click(
fn=generate_response,
inputs=[prompt_input, max_length, temperature, top_p, num_encoders, show_routing],
outputs=[response_output, routing_output],
api_name="generate"
)
refresh_info_btn.click(
fn=refresh_model_info,
outputs=model_info_display
)
# Model switching event handler (only if using pretrained)
if demo_instance.using_pretrained:
switch_btn.click(
fn=switch_model_size,
inputs=[model_switch],
outputs=[model_status, model_info_display]
)
# Auto-refresh status on page load
demo.load(
fn=lambda: (demo_instance.get_model_info(), f"**Status**: {'🟒 Real Pretrained Model' if demo_instance.using_pretrained else 'πŸ”΅ Custom Swarm Model' if demo_instance.model_loaded and not demo_instance.fallback_mode else '🟑 Simulation Mode'}"),
outputs=[model_info_display, status_indicator]
)
# Footer
gr.Markdown("""
---
### πŸ—οΈ Enhanced Architecture Overview
**πŸ€— Pretrained Integration**
- Direct loading from HuggingFace state-spaces Mamba models
- Automatic model size selection based on system resources
- Seamless fallback to custom swarm implementation
- Dynamic model switching without restart
**🧠 Intelligent Routing System**
- Domain detection based on prompt analysis
- Dynamic encoder selection optimized for content type
- Load balancing across specialized encoder pools
- Confidence-weighted response aggregation
**πŸ”§ Production Features**
- Comprehensive error handling and fallback modes
- Real-time performance monitoring and statistics
- Memory optimization and CUDA support
- Detailed logging and debugging capabilities
**πŸ“Š Specialized Domains**
- **Medical & Healthcare** β€’ **Legal & Regulatory** β€’ **Code & Technical**
- **Science & Research** β€’ **Creative Writing** β€’ **Business & Finance**
Built with ❀️ using Gradio, PyTorch, HuggingFace Transformers, and the Mamba architecture
""")
return demo
if __name__ == "__main__":
# Create and launch production demo
try:
demo = create_production_demo()
# Launch with production settings - compatible with different Gradio versions
launch_kwargs = {
"server_name": "0.0.0.0",
"server_port": 7860,
"share": False, # Set to True for public sharing
"debug": False,
"show_error": True,
"quiet": False,
}
# Add optional parameters if supported
try:
# Test if these parameters are supported in this Gradio version
import gradio as gr
import inspect
launch_signature = inspect.signature(gr.Blocks.launch)
# Add parameters if supported
if 'favicon_path' in launch_signature.parameters:
launch_kwargs['favicon_path'] = None
if 'ssl_verify' in launch_signature.parameters:
launch_kwargs['ssl_verify'] = False
if 'show_tips' in launch_signature.parameters:
launch_kwargs['show_tips'] = True
if 'enable_queue' in launch_signature.parameters:
launch_kwargs['enable_queue'] = True
if 'max_threads' in launch_signature.parameters:
launch_kwargs['max_threads'] = 10
except Exception as e:
logger.warning(f"Could not detect Gradio parameters: {e}")
# Launch with detected parameters
logger.info(f"Launching with parameters: {list(launch_kwargs.keys())}")
demo.launch(**launch_kwargs)
except Exception as e:
logger.error(f"Failed to launch demo: {e}")
print(f"❌ Demo launch failed: {e}")
print("Please check the logs for more details.")
# Try minimal launch as last resort
try:
logger.info("Attempting minimal launch...")
demo.launch(share=False, debug=False)
except Exception as e2:
logger.error(f"Minimal launch also failed: {e2}")
print(f"❌ All launch attempts failed. Error: {e2}")