File size: 6,876 Bytes
336b228
 
 
 
 
 
 
7aad614
 
 
336b228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# upload_to_hf.py - Script to upload your Mamba Swarm to HuggingFace

import os
import shutil
from huggingface_hub import HfApi, upload_folder
import json

# Import the actual model classes
from modeling_mamba_swarm import MambaSwarmForCausalLM, MambaSwarmConfig

def prepare_model_repo():
    """Prepare model repository structure for HuggingFace"""
    
    # Create required files for HuggingFace model
    model_files = {
        "README.md": create_model_readme(),
        "config.json": create_model_config(),
        "requirements.txt": create_requirements(),
        "modeling_mamba_swarm.py": create_modeling_file()
    }
    
    # Create model repo directory
    os.makedirs("hf_model_repo", exist_ok=True)
    
    # Copy your mamba_swarm code
    shutil.copytree("mamba_swarm", "hf_model_repo/mamba_swarm", dirs_exist_ok=True)
    
    # Create HuggingFace specific files
    for filename, content in model_files.items():
        with open(f"hf_model_repo/{filename}", "w") as f:
            f.write(content)
    
    print("Model repository prepared!")

def create_model_readme():
    return """---

license: apache-2.0

language: 

- en

pipeline_tag: text-generation

tags:

- mamba

- swarm

- routing

- language-model

---



# Mamba Swarm: Dynamic Routing Language Model



A novel architecture combining 100 specialized Mamba encoders with dynamic routing and aggregation for efficient language modeling.



## Architecture



- **100 Mamba Encoders**: Specialized domain experts

- **Dynamic Router**: Selects relevant encoders per input

- **Aggregation Layer**: Combines encoder outputs

- **Mamba Decoder**: Generates final responses



## Usage



```python

from transformers import AutoModel, AutoTokenizer

from mamba_swarm import MambaSwarmEngine



# Load the model

model = MambaSwarmEngine.from_pretrained("your-username/mamba-swarm-model")

tokenizer = AutoTokenizer.from_pretrained("your-username/mamba-swarm-model")



# Generate text

input_text = "Explain quantum computing"

inputs = tokenizer(input_text, return_tensors="pt")

outputs = model.generate(**inputs, max_length=100)

response = tokenizer.decode(outputs[0], skip_special_tokens=True)

print(response)

```



## Training



This model uses a three-phase training approach:

1. Collective pre-training on general data

2. Domain specialization for encoder groups  

3. End-to-end coordination training



## Performance



- **Parameters**: ~7B total (100 × 70M encoders)

- **Domains**: Medical, Legal, Code, Science, General

- **Routing Efficiency**: Only 10-20% of encoders active per query



## Citation



```

@misc{mamba-swarm-2025,

  title={Mamba Swarm: Dynamic Routing for Efficient Language Modeling},

  author={Your Name},

  year={2025}

}

```

"""

def create_model_config():
    config = {
        "model_type": "mamba_swarm",
        "architectures": ["MambaSwarmForCausalLM"],
        "num_encoders": 100,
        "encoder_config": {
            "d_model": 768,
            "n_layer": 24,
            "vocab_size": 50280,
            "ssm_cfg": {},
            "rms_norm": True,
            "residual_in_fp32": True,
            "fused_add_norm": True
        },
        "router_config": {
            "top_k": 10,
            "routing_strategy": "content_based"
        },
        "aggregator_config": {
            "method": "weighted_sum",
            "attention_heads": 8
        },
        "torch_dtype": "float16",
        "use_cache": True
    }
    return json.dumps(config, indent=2)

def create_requirements():
    return """torch>=2.0.0

transformers>=4.35.0

mamba-ssm>=1.2.0

causal-conv1d>=1.2.0

numpy>=1.21.0

scipy>=1.7.0

triton>=2.0.0

einops>=0.6.1

packaging>=20.0

"""

def create_modeling_file():
    return """# modeling_mamba_swarm.py - HuggingFace integration



from transformers import PreTrainedModel, PretrainedConfig

from transformers.modeling_outputs import CausalLMOutputWithPast

import torch

import torch.nn as nn



class MambaSwarmConfig(PretrainedConfig):

    model_type = "mamba_swarm"

    

    def __init__(

        self,

        num_encoders=100,

        encoder_config=None,

        router_config=None,

        aggregator_config=None,

        **kwargs

    ):

        self.num_encoders = num_encoders

        self.encoder_config = encoder_config or {}

        self.router_config = router_config or {}

        self.aggregator_config = aggregator_config or {}

        super().__init__(**kwargs)



class MambaSwarmForCausalLM(PreTrainedModel):

    config_class = MambaSwarmConfig

    

    def __init__(self, config):

        super().__init__(config)

        

        # Import your actual implementation

        from mamba_swarm.system.swarm_engine import MambaSwarmEngine

        

        self.swarm_engine = MambaSwarmEngine(config)

        

    def forward(

        self,

        input_ids=None,

        attention_mask=None,

        labels=None,

        **kwargs

    ):

        # Your forward pass implementation

        outputs = self.swarm_engine(input_ids, attention_mask)

        

        loss = None

        if labels is not None:

            # Calculate loss

            loss_fct = nn.CrossEntropyLoss()

            loss = loss_fct(outputs.logits.view(-1, outputs.logits.size(-1)), labels.view(-1))

        

        return CausalLMOutputWithPast(

            loss=loss,

            logits=outputs.logits,

            past_key_values=outputs.past_key_values,

        )

    

    def generate(self, *args, **kwargs):

        return self.swarm_engine.generate(*args, **kwargs)

    

    @classmethod

    def from_pretrained(cls, model_name_or_path, *model_args, **kwargs):

        # Custom loading logic if needed

        return super().from_pretrained(model_name_or_path, *model_args, **kwargs)

"""

def upload_model():
    """Upload model code to HuggingFace"""
    api = HfApi()
    
    # Upload model repository
    upload_folder(
        folder_path="hf_model_repo",
        repo_id="your-username/mamba-swarm-model",  # Replace with your username
        repo_type="model",
        commit_message="Initial upload of Mamba Swarm model"
    )
    
    print("Model uploaded successfully!")

def upload_weights():
    """Upload model weights separately"""
    # This assumes you have trained weights in checkpoints/
    api = HfApi()
    
    upload_folder(
        folder_path="checkpoints",
        repo_id="your-username/mamba-swarm-weights",  # Replace with your username
        repo_type="model", 
        commit_message="Upload trained model weights"
    )
    
    print("Weights uploaded successfully!")

if __name__ == "__main__":
    prepare_model_repo()
    upload_model()
    # upload_weights()  # Uncomment when you have trained weights