Spaces:
Sleeping
Sleeping
File size: 34,265 Bytes
fcf0a07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 |
# =============================================================================
# system/mambaSwarm.py - Unified Scalable Mamba Swarm Engine
# =============================================================================
import torch
import time
import os
import asyncio
from typing import Dict, List, Tuple, Optional, Union
from concurrent.futures import ThreadPoolExecutor
from transformers import AutoModelForCausalLM, AutoTokenizer
# Core imports
from core.config import MambaConfig, MambaSwarmConfig, auto_detect_tier
from core.tokenizer import MambaTokenizer
from core.preprocess import TextPreprocessor
from core.model import MambaModel
from core.mamba_swarm_integration import MambaEncoderSwarmModel, create_swarm_from_existing_config
# Routing imports
from routing.router import TopicRouter, ContentBasedRouter
from routing.tlm_manager import TLMManager
from routing.aggregator import AttentionAggregator, WeightedAggregator
from utils.domain_configs import DomainConfigs
class UnifiedMambaSwarm:
"""
Unified Mamba Swarm Engine combining the best of both architectures:
- Scalable tier-based system with auto-detection
- Production-ready async processing and monitoring
- Graceful fallback to simulation mode
- Support for both custom and pre-trained models
"""
def __init__(self,
tier: Optional[str] = None,
config: Optional[Union[MambaConfig, MambaSwarmConfig]] = None,
use_pretrained: bool = True,
config_override: Optional[Dict] = None):
"""
Initialize the unified swarm engine
Args:
tier: Scaling tier (demo/small/medium/large/full) or None for auto-detect
config: Either MambaConfig for custom models or MambaSwarmConfig for scaling
use_pretrained: Whether to use HuggingFace pretrained models
config_override: Dictionary to override config settings
"""
# Auto-detect tier if not specified
if tier is None:
tier = auto_detect_tier()
print(f"Auto-detected tier: {tier}")
self.tier = tier
self.use_pretrained = use_pretrained
# Initialize configuration
if config is None:
if use_pretrained:
self.swarm_config = MambaSwarmConfig(tier=tier)
if config_override:
self.swarm_config.config.update(config_override)
self.config = self._create_legacy_config()
else:
# Use custom config for legacy components
self.config = MambaConfig() # Default config
self.swarm_config = None
else:
if isinstance(config, MambaSwarmConfig):
self.swarm_config = config
self.config = self._create_legacy_config()
else:
self.config = config
self.swarm_config = None
self.device = getattr(self.config, 'device', 'cuda' if torch.cuda.is_available() else 'cpu')
# System properties
if self.swarm_config:
self.num_encoders = self.swarm_config.config["num_encoders"]
self.encoder_size = self.swarm_config.config["encoder_size"]
else:
self.num_encoders = getattr(self.config, 'num_specialists', 5)
self.encoder_size = "130M"
# Initialize components
self.encoders = []
self.tokenizer = None
self.preprocessor = None
self.router = None
self.aggregator = None
self.tlm_manager = None
# Performance tracking
self.stats = {
'total_requests': 0,
'total_tokens_processed': 0,
'avg_response_time': 0.0,
'specialist_usage': {i: 0 for i in range(self.num_encoders)},
'simulation_mode': False,
'model_load_errors': 0
}
# Initialize system
self._initialize_system()
print(f"β
Unified Mamba Swarm initialized: {self.tier} tier, {self.num_encoders} encoders")
def _create_legacy_config(self) -> MambaConfig:
"""Create legacy MambaConfig from SwarmConfig for compatibility"""
legacy_config = MambaConfig()
if self.swarm_config:
legacy_config.num_specialists = self.swarm_config.config["num_encoders"]
legacy_config.device = 'cuda' if torch.cuda.is_available() else 'cpu'
return legacy_config
def _initialize_system(self):
"""Initialize the complete swarm system"""
try:
# Initialize tokenizer and preprocessor
self._initialize_tokenizer()
self._initialize_preprocessor()
# Initialize encoders/specialists
if self.use_pretrained:
self._initialize_pretrained_encoders()
else:
self._initialize_custom_specialists()
# Initialize routing system
self._initialize_routing()
# Initialize aggregation system
self._initialize_aggregation()
print(f"π System initialization complete!")
except Exception as e:
print(f"β οΈ Error during initialization: {e}")
self._fallback_to_simulation()
def _initialize_tokenizer(self):
"""Initialize tokenizer based on mode"""
if self.use_pretrained:
base_model_name = self._get_base_model_name()
try:
self.tokenizer = AutoTokenizer.from_pretrained(base_model_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
print(f"π Loaded HuggingFace tokenizer: {base_model_name}")
except:
print("β οΈ HuggingFace tokenizer failed, using custom tokenizer")
self.tokenizer = MambaTokenizer(self.config)
else:
self.tokenizer = MambaTokenizer(self.config)
def _initialize_preprocessor(self):
"""Initialize text preprocessor"""
self.preprocessor = TextPreprocessor(self.config)
def _get_base_model_name(self):
"""Get the appropriate base model for current tier"""
model_mapping = {
"130M": "state-spaces/mamba-130m",
"370M": "state-spaces/mamba-370m",
"790M": "state-spaces/mamba-790m",
"1.4B": "state-spaces/mamba-1.4b",
"2.8B": "state-spaces/mamba-2.8b"
}
return model_mapping.get(self.encoder_size, "state-spaces/mamba-130m")
def _initialize_pretrained_encoders(self):
"""Initialize pretrained encoder swarm"""
print(f"π Loading {self.num_encoders} pretrained encoders...")
base_model_name = self._get_base_model_name()
try:
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.float16 if self.num_encoders > 5 else torch.float32,
device_map="auto" if torch.cuda.is_available() else "cpu"
)
# Create encoder instances
for i in range(self.num_encoders):
domain_info = self.swarm_config.domain_assignments[i] if self.swarm_config else {
"domain": f"general_{i}", "specialty": "general"
}
if self.tier == "demo" or self.num_encoders <= 5:
# Share model instance for smaller configurations
encoder = {
"id": i,
"model": base_model,
"domain": domain_info["domain"],
"specialty": domain_info["specialty"],
"shared": True
}
else:
# Separate instances for larger configurations
encoder = {
"id": i,
"model": AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.float16,
device_map="auto"
),
"domain": domain_info["domain"],
"specialty": domain_info["specialty"],
"shared": False
}
self.encoders.append(encoder)
print(f" β Encoder {i}: {encoder['domain']} specialist")
except Exception as e:
print(f"β Failed to load pretrained models: {e}")
self.stats['model_load_errors'] += 1
self._create_simulated_encoders()
def _initialize_custom_specialists(self):
"""Initialize custom TLM specialists or native Mamba swarm"""
try:
if hasattr(self, 'use_native_swarm') and self.use_native_swarm:
# Use the native Mamba swarm integration
self.native_swarm_model = create_swarm_from_existing_config(
self.config, num_encoders=self.num_encoders
)
print(f"β Initialized native Mamba swarm with {self.num_encoders} encoders")
else:
# Use TLM manager (legacy approach)
self.tlm_manager = TLMManager(self.config)
print(f"β Initialized {self.num_encoders} custom specialists")
except Exception as e:
print(f"β οΈ Custom specialists failed: {e}")
self._create_simulated_encoders()
def _create_simulated_encoders(self):
"""Create simulated encoders for demonstration/fallback"""
print("π Creating simulated encoders...")
self.stats['simulation_mode'] = True
for i in range(self.num_encoders):
domain_info = self.swarm_config.domain_assignments[i] if self.swarm_config else {
"domain": f"general_{i}", "specialty": "general"
}
encoder = {
"id": i,
"model": None,
"domain": domain_info["domain"],
"specialty": domain_info["specialty"],
"simulated": True
}
self.encoders.append(encoder)
def _initialize_routing(self):
"""Initialize routing system"""
try:
if self.use_pretrained and self.swarm_config:
# Use content-based router for pretrained models
router_config = self.swarm_config.get_router_config()
self.router = ContentBasedRouter(
num_encoders=self.num_encoders,
domain_assignments=self.swarm_config.domain_assignments,
config=router_config
)
else:
# Use topic router for custom models
domain_configs = DomainConfigs.get_domain_configs(self.num_encoders)
self.router = TopicRouter(self.config, domain_configs)
if hasattr(self.router, 'to'):
self.router.to(self.device)
print("π§ Router initialized")
except Exception as e:
print(f"β οΈ Router initialization failed: {e}")
# Create basic fallback router
self.router = self._create_fallback_router()
def _initialize_aggregation(self):
"""Initialize aggregation system"""
try:
if self.use_pretrained:
self.aggregator = WeightedAggregator(
num_encoders=self.num_encoders,
hidden_dim=768
)
else:
self.aggregator = AttentionAggregator(self.config)
if hasattr(self.aggregator, 'to'):
self.aggregator.to(self.device)
print("π Aggregator initialized")
except Exception as e:
print(f"β οΈ Aggregator initialization failed: {e}")
self.aggregator = None
def _create_fallback_router(self):
"""Create a simple fallback router"""
class FallbackRouter:
def __init__(self, num_encoders):
self.num_encoders = num_encoders
def route(self, text):
# Simple round-robin routing
import random
num_selected = min(3, self.num_encoders)
return {
"selected_encoders": random.sample(range(self.num_encoders), num_selected)
}
def chunk_and_route(self, text):
return [{"specialists": [(0, 1.0)], "chunk": text}]
return FallbackRouter(self.num_encoders)
def _fallback_to_simulation(self):
"""Complete fallback to simulation mode"""
print("π Entering full simulation mode")
self.stats['simulation_mode'] = True
self._create_simulated_encoders()
if not self.router:
self.router = self._create_fallback_router()
# =============================================================================
# MAIN PROCESSING METHODS
# =============================================================================
def generate(self, prompt: str, max_length: int = 100, temperature: float = 0.7,
show_routing: bool = True) -> Dict:
"""
Generate response using the swarm (from swarmEngine2 style)
Args:
prompt: Input text prompt
max_length: Maximum tokens to generate
temperature: Sampling temperature
show_routing: Whether to display routing information
Returns:
Dict with response and metadata
"""
start_time = time.time()
try:
# Route to appropriate encoders
if hasattr(self.router, 'route'):
routing_decision = self.router.route(prompt)
selected_encoders = routing_decision.get("selected_encoders", [0])
else:
# Fallback routing
selected_encoders = [0]
if show_routing:
print(f"π Routing: Selected {len(selected_encoders)} encoders")
for enc_id in selected_encoders[:3]:
if enc_id < len(self.encoders):
domain = self.encoders[enc_id]["domain"]
print(f" Encoder {enc_id}: {domain}")
# Generate response
if self.stats['simulation_mode'] or any(enc.get("simulated") for enc in self.encoders):
response = self._simulate_generation(prompt, selected_encoders, max_length)
else:
response = self._real_generation(prompt, selected_encoders, max_length, temperature)
# Update statistics
processing_time = time.time() - start_time
self._update_stats_simple(prompt, selected_encoders, processing_time)
return {
"response": response,
"processing_time": processing_time,
"routing_info": {
"selected_encoders": selected_encoders,
"num_active": len(selected_encoders),
"total_encoders": self.num_encoders,
"domains": [self.encoders[i]["domain"] for i in selected_encoders
if i < len(self.encoders)]
},
"success": True
}
except Exception as e:
return {
"response": f"Error generating response: {str(e)}",
"processing_time": time.time() - start_time,
"success": False,
"error": str(e)
}
def process_request(self, text: str, max_new_tokens: int = 100) -> Dict:
"""
Process request using traditional pipeline (from swarm_engine style)
Args:
text: Input text to process
max_new_tokens: Maximum tokens to generate
Returns:
Dict with response and metadata
"""
start_time = time.time()
try:
# Step 1: Preprocess input
if self.preprocessor:
clean_text = self.preprocessor.clean_text(text)
else:
clean_text = text
# Step 2: Route to specialists
if hasattr(self.router, 'chunk_and_route'):
routing_results = self.router.chunk_and_route(clean_text)
else:
# Fallback for content-based router
routing_decision = self.router.route(clean_text)
routing_results = [{"specialists": [(enc_id, 1.0) for enc_id in routing_decision["selected_encoders"]],
"chunk": clean_text}]
# Step 3: Process chunks
if self.tlm_manager and not self.stats['simulation_mode']:
specialist_outputs = self.tlm_manager.encode_parallel(routing_results)
else:
# Simulate processing
specialist_outputs = [{"response": f"Processed chunk: {res['chunk'][:50]}..."}
for res in routing_results]
# Step 4: Aggregate results
if self.aggregator and not self.stats['simulation_mode']:
response = self.aggregator.generate_response(specialist_outputs, max_new_tokens)
else:
# Simple aggregation fallback
response = " ".join([out.get("response", "") for out in specialist_outputs])
# Update stats
processing_time = time.time() - start_time
self._update_stats(text, routing_results, processing_time)
return {
'response': response,
'processing_time': processing_time,
'chunks_processed': len(routing_results),
'specialists_used': self._get_specialists_used(routing_results),
'success': True
}
except Exception as e:
return {
'response': f"Error processing request: {str(e)}",
'processing_time': time.time() - start_time,
'success': False,
'error': str(e)
}
# =============================================================================
# ASYNC AND BATCH PROCESSING
# =============================================================================
async def process_request_async(self, text: str, max_new_tokens: int = 100) -> Dict:
"""Async version of process_request"""
loop = asyncio.get_event_loop()
with ThreadPoolExecutor() as executor:
result = await loop.run_in_executor(
executor, self.process_request, text, max_new_tokens
)
return result
async def generate_async(self, prompt: str, max_length: int = 100,
temperature: float = 0.7) -> Dict:
"""Async version of generate"""
loop = asyncio.get_event_loop()
with ThreadPoolExecutor() as executor:
result = await loop.run_in_executor(
executor, self.generate, prompt, max_length, temperature, False
)
return result
def batch_process(self, texts: List[str], max_new_tokens: int = 100,
method: str = "process") -> List[Dict]:
"""
Process multiple texts in batch
Args:
texts: List of input texts
max_new_tokens: Maximum tokens to generate
method: "process" or "generate" for processing method
"""
results = []
for text in texts:
if method == "generate":
result = self.generate(text, max_new_tokens, show_routing=False)
else:
result = self.process_request(text, max_new_tokens)
results.append(result)
return results
# =============================================================================
# GENERATION METHODS
# =============================================================================
def _simulate_generation(self, prompt: str, selected_encoders: List[int], max_length: int) -> str:
"""Simulate generation for demo/fallback purposes"""
import random
# Determine response type based on selected encoder domains
domains = [self.encoders[i]["domain"] for i in selected_encoders if i < len(self.encoders)]
if any("code" in domain.lower() for domain in domains):
return f"Here's a solution for '{prompt[:30]}...':\n\n```python\ndef solution():\n # Implementation here\n return result\n```"
elif any("medical" in domain.lower() for domain in domains):
return f"Regarding '{prompt[:30]}...': This medical topic requires careful consideration. Please consult healthcare professionals."
elif any("science" in domain.lower() for domain in domains):
return f"From a scientific perspective on '{prompt[:30]}...': Current research indicates several key factors..."
else:
return f"Thank you for asking about '{prompt[:30]}...'. Based on expertise from {len(selected_encoders)} specialized domains, here's a comprehensive response..."
def _real_generation(self, prompt: str, selected_encoders: List[int],
max_length: int, temperature: float) -> str:
"""Real generation using loaded models"""
if not selected_encoders or selected_encoders[0] >= len(self.encoders):
return "No valid encoders available for generation."
try:
# Use primary encoder for generation
primary_encoder = self.encoders[selected_encoders[0]]
if primary_encoder.get("simulated") or not primary_encoder["model"]:
return self._simulate_generation(prompt, selected_encoders, max_length)
# Tokenize input
if hasattr(self.tokenizer, 'encode'):
inputs = self.tokenizer(prompt, return_tensors="pt")
else:
# Fallback tokenization
return self._simulate_generation(prompt, selected_encoders, max_length)
# Generate with model
with torch.no_grad():
outputs = primary_encoder["model"].generate(
**inputs,
max_length=max_length,
temperature=temperature,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id if hasattr(self.tokenizer, 'eos_token_id') else 0
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove original prompt from response
response = response[len(prompt):].strip()
return response if response else "Generated response was empty."
except Exception as e:
print(f"β οΈ Real generation failed: {e}")
return self._simulate_generation(prompt, selected_encoders, max_length)
# =============================================================================
# UTILITY METHODS
# =============================================================================
def _get_specialists_used(self, routing_results: List[Dict]) -> List[int]:
"""Extract specialist IDs used in routing"""
specialists_used = set()
for chunk_info in routing_results:
if 'specialists' in chunk_info:
for specialist_id, _ in chunk_info['specialists']:
specialists_used.add(specialist_id)
return list(specialists_used)
def _update_stats(self, text: str, routing_results: List[Dict], processing_time: float):
"""Update detailed performance statistics"""
self.stats['total_requests'] += 1
self.stats['total_tokens_processed'] += len(text.split())
# Update average response time
prev_avg = self.stats['avg_response_time']
n = self.stats['total_requests']
self.stats['avg_response_time'] = (prev_avg * (n-1) + processing_time) / n
# Update specialist usage
specialists_used = self._get_specialists_used(routing_results)
for specialist_id in specialists_used:
if specialist_id in self.stats['specialist_usage']:
self.stats['specialist_usage'][specialist_id] += 1
def _update_stats_simple(self, text: str, selected_encoders: List[int], processing_time: float):
"""Update simple statistics for generate method"""
self.stats['total_requests'] += 1
self.stats['total_tokens_processed'] += len(text.split())
# Update average response time
prev_avg = self.stats['avg_response_time']
n = self.stats['total_requests']
self.stats['avg_response_time'] = (prev_avg * (n-1) + processing_time) / n
# Update encoder usage
for enc_id in selected_encoders:
if enc_id in self.stats['specialist_usage']:
self.stats['specialist_usage'][enc_id] += 1
# =============================================================================
# SCALING AND MANAGEMENT
# =============================================================================
def scale_up(self, new_tier: str):
"""Scale up to a higher tier"""
if new_tier not in ["demo", "small", "medium", "large", "full"]:
raise ValueError(f"Invalid tier: {new_tier}")
print(f"π Scaling from {self.tier} to {new_tier}")
# Preserve current stats
old_stats = self.stats.copy()
# Reinitialize with new tier
self.__init__(tier=new_tier, use_pretrained=self.use_pretrained)
# Restore relevant stats
self.stats['total_requests'] = old_stats['total_requests']
self.stats['total_tokens_processed'] = old_stats['total_tokens_processed']
self.stats['avg_response_time'] = old_stats['avg_response_time']
def get_system_info(self) -> Dict:
"""Get comprehensive system information"""
info = {
"tier": self.tier,
"num_encoders": self.num_encoders,
"encoder_size": self.encoder_size,
"use_pretrained": self.use_pretrained,
"simulation_mode": self.stats['simulation_mode'],
"device": self.device,
"domains": list(set(enc["domain"] for enc in self.encoders)),
}
if self.swarm_config:
info.update({
"total_parameters": self.swarm_config.config["total_params"],
"memory_estimate": self.swarm_config.config["memory_estimate"],
"hardware_recommendation": self.swarm_config.config["hardware"]
})
return info
def get_stats(self) -> Dict:
"""Get current performance statistics"""
return self.stats.copy()
def load_models(self, checkpoint_path: str):
"""Load trained models from checkpoint"""
if not os.path.exists(checkpoint_path):
print(f"β Checkpoint not found: {checkpoint_path}")
return
try:
checkpoint = torch.load(checkpoint_path, map_location=self.device)
# Load aggregator
if self.aggregator and 'aggregator_state' in checkpoint:
self.aggregator.load_state_dict(checkpoint['aggregator_state'])
# Load specialists (if using custom models)
if self.tlm_manager and 'specialist_states' in checkpoint:
for specialist_id, state_dict in checkpoint['specialist_states'].items():
if specialist_id in self.tlm_manager.specialists:
self.tlm_manager.specialists[specialist_id].model.load_state_dict(state_dict)
print(f"β
Models loaded from {checkpoint_path}")
except Exception as e:
print(f"β Error loading models: {e}")
def set_eval_mode(self):
"""Set all models to evaluation mode"""
if self.tlm_manager:
for specialist in self.tlm_manager.specialists.values():
if hasattr(specialist, 'model'):
specialist.model.eval()
if self.aggregator and hasattr(self.aggregator, 'eval'):
self.aggregator.eval()
if self.router and hasattr(self.router, 'eval'):
self.router.eval()
# Set pretrained encoders to eval mode
for encoder in self.encoders:
if encoder.get("model") and hasattr(encoder["model"], 'eval'):
encoder["model"].eval()
def set_train_mode(self):
"""Set all models to training mode"""
if self.tlm_manager:
for specialist in self.tlm_manager.specialists.values():
if hasattr(specialist, 'model'):
specialist.model.train()
if self.aggregator and hasattr(self.aggregator, 'train'):
self.aggregator.train()
if self.router and hasattr(self.router, 'train'):
self.router.train()
# =============================================================================
# FACTORY FUNCTIONS
# =============================================================================
def create_mamba_swarm(tier: str = "auto", use_pretrained: bool = True,
config_override: Optional[Dict] = None) -> UnifiedMambaSwarm:
"""
Factory function to create appropriately configured swarm
Args:
tier: Scaling tier or "auto" for auto-detection
use_pretrained: Whether to use pretrained HuggingFace models
config_override: Dictionary to override default config
Returns:
Configured UnifiedMambaSwarm instance
"""
if tier == "auto":
tier = auto_detect_tier()
return UnifiedMambaSwarm(
tier=tier,
use_pretrained=use_pretrained,
config_override=config_override
)
def create_production_swarm(tier: str = "medium") -> UnifiedMambaSwarm:
"""Create production-ready swarm with optimal settings"""
return UnifiedMambaSwarm(
tier=tier,
use_pretrained=True,
config_override={
"batch_size": 32,
"max_sequence_length": 2048
}
)
def create_development_swarm() -> UnifiedMambaSwarm:
"""Create development swarm with simulation fallback"""
return UnifiedMambaSwarm(
tier="demo",
use_pretrained=True,
config_override={
"simulation_fallback": True
}
)
# =============================================================================
# MAIN EXECUTION
# =============================================================================
if __name__ == "__main__":
print("π§ͺ Testing Unified Mamba Swarm...")
# Create swarm instance
swarm = create_mamba_swarm(tier="demo")
# Display system info
print("\nπ System Information:")
info = swarm.get_system_info()
for key, value in info.items():
print(f" {key}: {value}")
# Test both processing methods
test_prompts = [
"Write a Python function to calculate fibonacci numbers",
"Explain the process of photosynthesis",
"What are the symptoms of diabetes?"
]
print("\nπ§ͺ Testing generate method:")
for prompt in test_prompts[:2]:
result = swarm.generate(prompt, max_length=150)
print(f"\nPrompt: {prompt}")
print(f"Response: {result['response'][:100]}...")
print(f"Processing time: {result['processing_time']:.3f}s")
print(f"Routing: {result['routing_info']['domains']}")
print("\nπ§ͺ Testing process_request method:")
result = swarm.process_request(test_prompts[2])
print(f"Response: {result['response'][:100]}...")
print(f"Success: {result['success']}")
# Test batch processing
print("\nπ§ͺ Testing batch processing:")
batch_results = swarm.batch_process(test_prompts, method="generate")
print(f"Processed {len(batch_results)} requests in batch")
# Display final stats
print("\nπ Final Statistics:")
stats = swarm.get_stats()
for key, value in stats.items():
if key != 'specialist_usage':
print(f" {key}: {value}")
print("\nβ
Testing complete!")
|