File size: 5,209 Bytes
fcf0a07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# =============================================================================
# system/inference.py
# =============================================================================
import torch
from typing import Dict, List, Optional, Union
import time

class MambaInferenceEngine:
    """Optimized inference engine for Mamba swarm"""
    
    def __init__(self, swarm_engine):
        self.swarm_engine = swarm_engine
        self.config = swarm_engine.config
        
        # Inference optimizations
        self.use_half_precision = True
        self.use_torch_compile = hasattr(torch, 'compile')
        
        # Apply optimizations
        self._optimize_models()
    
    def _optimize_models(self):
        """Apply inference optimizations"""
        if self.use_half_precision and self.config.device != 'cpu':
            # Convert to half precision for faster inference
            for specialist in self.swarm_engine.tlm_manager.specialists.values():
                specialist.model = specialist.model.half()
            self.swarm_engine.aggregator = self.swarm_engine.aggregator.half()
        
        if self.use_torch_compile:
            try:
                # Compile models for faster inference (PyTorch 2.0+)
                for specialist in self.swarm_engine.tlm_manager.specialists.values():
                    specialist.model = torch.compile(specialist.model)
                self.swarm_engine.aggregator = torch.compile(self.swarm_engine.aggregator)
                print("Models compiled for faster inference")
            except Exception as e:
                print(f"Could not compile models: {e}")
    
    def generate(self, prompt: str, max_tokens: int = 100, 

                temperature: float = 0.7, top_k: int = 50) -> Dict:
        """

        Generate text response with advanced sampling

        

        Args:

            prompt: Input text prompt

            max_tokens: Maximum tokens to generate

            temperature: Sampling temperature

            top_k: Top-k sampling parameter

            

        Returns:

            Dict with generated text and metadata

        """
        start_time = time.time()
        
        # Process through swarm
        result = self.swarm_engine.process_request(prompt, max_tokens)
        
        if not result['success']:
            return result
        
        # Add inference metadata
        result.update({
            'temperature': temperature,
            'top_k': top_k,
            'inference_time': time.time() - start_time,
            'tokens_per_second': max_tokens / (time.time() - start_time)
        })
        
        return result
    
    def stream_generate(self, prompt: str, max_tokens: int = 100):
        """

        Stream generation token by token (placeholder implementation)

        """
        # This would implement streaming generation
        # For now, return the full response
        result = self.generate(prompt, max_tokens)
        yield result['response']
    
    def chat_completion(self, messages: List[Dict], max_tokens: int = 100) -> Dict:
        """

        Chat completion interface similar to OpenAI API

        

        Args:

            messages: List of message dicts with 'role' and 'content'

            max_tokens: Maximum tokens to generate

            

        Returns:

            Chat completion response

        """
        # Convert messages to single prompt
        prompt = self._format_chat_prompt(messages)
        
        # Generate response
        result = self.generate(prompt, max_tokens)
        
        if result['success']:
            # Format as chat completion
            return {
                'choices': [{
                    'message': {
                        'role': 'assistant',
                        'content': result['response']
                    },
                    'finish_reason': 'stop'
                }],
                'usage': {
                    'prompt_tokens': len(prompt.split()),
                    'completion_tokens': len(result['response'].split()),
                    'total_tokens': len(prompt.split()) + len(result['response'].split())
                },
                'model': 'mamba-swarm-70m',
                'inference_time': result.get('inference_time', 0)
            }
        else:
            return {
                'error': result.get('error', 'Unknown error'),
                'success': False
            }
    
    def _format_chat_prompt(self, messages: List[Dict]) -> str:
        """Format chat messages into a single prompt"""
        formatted = ""
        
        for message in messages:
            role = message.get('role', 'user')
            content = message.get('content', '')
            
            if role == 'system':
                formatted += f"System: {content}\n"
            elif role == 'user':
                formatted += f"User: {content}\n"
            elif role == 'assistant':
                formatted += f"Assistant: {content}\n"
        
        formatted += "Assistant: "
        return formatted