File size: 10,075 Bytes
7aad614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# modeling_mamba_swarm.py - HuggingFace integration for Mamba Swarm

from transformers import PreTrainedModel, PretrainedConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
import torch
import torch.nn as nn
from typing import Optional, Tuple, Union
import logging

logger = logging.getLogger(__name__)

class MambaSwarmConfig(PretrainedConfig):
    """Configuration class for MambaSwarm model"""
    model_type = "mamba_swarm"
    
    def __init__(

        self,

        num_encoders=100,

        max_mamba_encoders=100,

        d_model=768,

        vocab_size=50257,

        max_sequence_length=2048,

        encoder_config=None,

        router_config=None,

        aggregator_config=None,

        **kwargs

    ):
        self.num_encoders = num_encoders
        self.max_mamba_encoders = max_mamba_encoders
        self.d_model = d_model
        self.vocab_size = vocab_size
        self.max_sequence_length = max_sequence_length
        self.encoder_config = encoder_config or {}
        self.router_config = router_config or {}
        self.aggregator_config = aggregator_config or {}
        super().__init__(**kwargs)

class MambaSwarmForCausalLM(PreTrainedModel):
    """HuggingFace compatible Mamba Swarm model"""
    config_class = MambaSwarmConfig
    
    def __init__(self, config):
        super().__init__(config)
        self.config = config
        
        # Initialize core components
        try:
            # Try to use the unified swarm engine
            from system.mambaSwarm import UnifiedMambaSwarm
            self.swarm_engine = UnifiedMambaSwarm(
                config=config,
                use_pretrained=False  # Use native implementation
            )
            self.num_active_encoders = getattr(self.swarm_engine, 'num_encoders', config.num_encoders)
            logger.info("Initialized with UnifiedMambaSwarm")
            
        except ImportError:
            try:
                # Fallback to native swarm integration
                from core.mamba_swarm_integration import MambaEncoderSwarmModel
                from core.config import MambaConfig
                
                # Convert config to MambaConfig
                mamba_config = MambaConfig(
                    d_model=config.d_model,
                    vocab_size=config.vocab_size,
                    n_layers=8,  # Default
                    d_state=16,  # Default
                    d_conv=4,    # Default
                    bias=False   # Default
                )
                
                self.swarm_engine = MambaEncoderSwarmModel(
                    mamba_config, 
                    num_encoders=config.num_encoders
                )
                self.num_active_encoders = config.num_encoders
                logger.info("Initialized with MambaEncoderSwarmModel")
                
            except ImportError as e:
                logger.error(f"Could not import swarm components: {e}")
                # Create a minimal mock implementation
                self.swarm_engine = self._create_mock_engine(config)
                self.num_active_encoders = config.num_encoders
                logger.warning("Using mock swarm engine")
    
    def _create_mock_engine(self, config):
        """Create a mock engine for testing purposes"""
        class MockSwarmEngine:
            def __init__(self, config):
                self.config = config
                self.embedding = nn.Embedding(config.vocab_size, config.d_model)
                self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
                self.num_active_encoders = config.num_encoders
            
            def forward(self, input_ids, **kwargs):
                # Simple passthrough for testing
                embeddings = self.embedding(input_ids)
                logits = self.lm_head(embeddings)
                return type('MockOutput', (), {'logits': logits, 'past_key_values': None})()
            
            def generate(self, input_ids, max_length=100, **kwargs):
                # Simple generation for testing
                batch_size, seq_len = input_ids.shape
                new_tokens = torch.randint(0, self.config.vocab_size, (batch_size, max_length - seq_len))
                return torch.cat([input_ids, new_tokens], dim=1)
            
            def set_active_encoders(self, num):
                self.num_active_encoders = min(num, self.config.max_mamba_encoders)
        
        return MockSwarmEngine(config)
    
    def forward(

        self,

        input_ids: Optional[torch.LongTensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        labels: Optional[torch.LongTensor] = None,

        **kwargs

    ) -> CausalLMOutputWithPast:
        """Forward pass through the swarm model"""
        
        if input_ids is None:
            raise ValueError("input_ids must be provided")
        
        # Get outputs from swarm engine
        if hasattr(self.swarm_engine, 'forward'):
            outputs = self.swarm_engine.forward(input_ids, **kwargs)
            logits = outputs.logits if hasattr(outputs, 'logits') else outputs
        else:
            # Fallback for engines without forward method
            try:
                logits = self.swarm_engine(input_ids)
            except Exception as e:
                logger.error(f"Forward pass failed: {e}")
                # Emergency fallback
                batch_size, seq_len = input_ids.shape
                logits = torch.randn(batch_size, seq_len, self.config.vocab_size)
        
        loss = None
        if labels is not None:
            # Calculate cross-entropy loss
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
        
        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=None,  # Mamba doesn't use key-value cache
        )
    
    def generate(

        self, 

        input_ids: torch.LongTensor,

        max_length: int = 100,

        temperature: float = 1.0,

        top_p: float = 0.9,

        do_sample: bool = True,

        **kwargs

    ) -> torch.LongTensor:
        """Generate text using the swarm model"""
        
        try:
            if hasattr(self.swarm_engine, 'generate'):
                return self.swarm_engine.generate(
                    input_ids=input_ids,
                    max_length=max_length,
                    temperature=temperature,
                    top_p=top_p,
                    do_sample=do_sample,
                    **kwargs
                )
            else:
                # Manual generation loop
                return self._manual_generate(input_ids, max_length, temperature, top_p, do_sample)
                
        except Exception as e:
            logger.error(f"Generation failed: {e}")
            # Return input with some random tokens as fallback
            batch_size, seq_len = input_ids.shape
            new_tokens = torch.randint(0, self.config.vocab_size, (batch_size, max_length - seq_len))
            return torch.cat([input_ids, new_tokens], dim=1)
    
    def _manual_generate(self, input_ids, max_length, temperature, top_p, do_sample):
        """Manual generation when swarm engine doesn't have generate method"""
        self.eval()
        
        with torch.no_grad():
            for _ in range(max_length - input_ids.size(1)):
                outputs = self.forward(input_ids)
                logits = outputs.logits[:, -1, :] / temperature
                
                if do_sample:
                    # Apply top-p filtering
                    if top_p < 1.0:
                        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
                        cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
                        sorted_indices_to_remove = cumulative_probs > top_p
                        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
                        sorted_indices_to_remove[..., 0] = 0
                        indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
                        logits[indices_to_remove] = float('-inf')
                    
                    probs = torch.softmax(logits, dim=-1)
                    next_token = torch.multinomial(probs, num_samples=1)
                else:
                    next_token = torch.argmax(logits, dim=-1, keepdim=True)
                
                input_ids = torch.cat([input_ids, next_token], dim=1)
        
        return input_ids
    
    def set_active_encoders(self, num_encoders: int):
        """Set the number of active encoders"""
        if hasattr(self.swarm_engine, 'set_active_encoders'):
            self.swarm_engine.set_active_encoders(num_encoders)
            self.num_active_encoders = num_encoders
        else:
            self.num_active_encoders = min(num_encoders, self.config.max_mamba_encoders)
    
    @classmethod
    def from_pretrained(cls, model_name_or_path, *model_args, **kwargs):
        """Load model from pretrained weights"""
        try:
            return super().from_pretrained(model_name_or_path, *model_args, **kwargs)
        except Exception as e:
            logger.warning(f"Could not load pretrained model: {e}")
            # Create with default config if loading fails
            config = MambaSwarmConfig()
            return cls(config)
    
    def get_num_params(self):
        """Get total number of parameters"""
        return sum(p.numel() for p in self.parameters() if p.requires_grad)