Spaces:
Sleeping
Sleeping
File size: 62,885 Bytes
1535ec7 9a49aa7 1535ec7 71c81b0 1535ec7 71c81b0 1535ec7 71c81b0 9a49aa7 71c81b0 1535ec7 9a49aa7 1535ec7 9a49aa7 f67f570 9a49aa7 f67f570 9a49aa7 71c81b0 9a49aa7 71c81b0 9a49aa7 71c81b0 9a49aa7 71c81b0 9a49aa7 71c81b0 9a49aa7 71c81b0 9a49aa7 71c81b0 9a49aa7 71c81b0 9a49aa7 71c81b0 9a49aa7 71c81b0 9a49aa7 71c81b0 9a49aa7 f67f570 9a49aa7 f67f570 9a49aa7 71c81b0 9a49aa7 f67f570 9a49aa7 f67f570 9a49aa7 f67f570 9a49aa7 f67f570 9a49aa7 f67f570 9a49aa7 f67f570 9a49aa7 f67f570 9a49aa7 f67f570 71c81b0 9a49aa7 71c81b0 9a49aa7 71c81b0 9a49aa7 71c81b0 9a49aa7 71c81b0 9a49aa7 71c81b0 9a49aa7 71c81b0 9a49aa7 71c81b0 9a49aa7 71c81b0 9a49aa7 71c81b0 9a49aa7 71c81b0 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 f67f570 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 71c81b0 1535ec7 9a49aa7 1535ec7 71c81b0 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 d793fdd 9a49aa7 1535ec7 9a49aa7 f67f570 1535ec7 9a49aa7 1535ec7 9a49aa7 d793fdd 9a49aa7 d793fdd 9a49aa7 d793fdd 9a49aa7 d793fdd 9a49aa7 f67f570 9a49aa7 f67f570 9a49aa7 f67f570 9a49aa7 f67f570 9a49aa7 f67f570 9a49aa7 f67f570 9a49aa7 f67f570 9a49aa7 f67f570 9a49aa7 f67f570 9a49aa7 1535ec7 9a49aa7 f67f570 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 f67f570 9a49aa7 f67f570 1535ec7 9a49aa7 1535ec7 71c81b0 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 75b0b92 1535ec7 75b0b92 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 75b0b92 71c81b0 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 75b0b92 9a49aa7 1535ec7 9a49aa7 75b0b92 1535ec7 9a49aa7 1535ec7 9a49aa7 1535ec7 9a49aa7 71c81b0 1535ec7 9a49aa7 71c81b0 1535ec7 9a49aa7 f67f570 9a49aa7 1535ec7 9a49aa7 1535ec7 71c81b0 1535ec7 9a49aa7 7313e2b 9a49aa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 |
#!/usr/bin/env python3
"""
Mamba Encoder Swarm Demo - Ultimate Production Version
Combines the best features from all versions with advanced optimization and no gibberish generation
"""
import gradio as gr
import torch
import numpy as np
import time
import json
import logging
import os
import psutil
import gc
import warnings
from typing import Optional, Dict, Any, Tuple, List
from datetime import datetime
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM, GPT2Tokenizer
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore")
# Setup comprehensive logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class UltimateModelLoader:
"""Ultimate model loader combining all advanced features with reliability"""
def __init__(self):
self.model = None
self.tokenizer = None
self.config = None
self.model_name = None
self.model_size = "medium"
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Comprehensive model configurations
self.model_configs = {
# Reliable models (priority 1-3)
"gpt2-medium": {
"display_name": "GPT2 Medium (355M)",
"size": "medium",
"priority": 1,
"reliable": True,
"params": 355_000_000
},
"gpt2": {
"display_name": "GPT2 Base (117M)",
"size": "small",
"priority": 2,
"reliable": True,
"params": 117_000_000
},
"distilgpt2": {
"display_name": "DistilGPT2 (82M)",
"size": "small",
"priority": 3,
"reliable": True,
"params": 82_000_000
},
# Advanced models (priority 4-7)
"microsoft/DialoGPT-medium": {
"display_name": "DialoGPT Medium (355M)",
"size": "medium",
"priority": 4,
"reliable": True,
"params": 355_000_000
},
"state-spaces/mamba-130m": {
"display_name": "Mamba 130M",
"size": "small",
"priority": 5,
"reliable": False, # Needs validation
"params": 130_000_000,
"vocab_size": 50280,
"d_model": 768
},
"state-spaces/mamba-790m": {
"display_name": "Mamba 790M",
"size": "large",
"priority": 6,
"reliable": False,
"params": 790_000_000,
"vocab_size": 50280,
"d_model": 1536
},
"state-spaces/mamba-1.4b": {
"display_name": "Mamba 1.4B",
"size": "xlarge",
"priority": 7,
"reliable": False,
"params": 1_400_000_000,
"vocab_size": 50280,
"d_model": 2048
}
}
# Generation configurations by model size
self.generation_configs = {
"small": {
"max_new_tokens": 150,
"temperature": (0.3, 1.2),
"top_p": (0.5, 0.95),
"repetition_penalty": 1.15,
"no_repeat_ngram_size": 3
},
"medium": {
"max_new_tokens": 250,
"temperature": (0.3, 1.0),
"top_p": (0.5, 0.95),
"repetition_penalty": 1.1,
"no_repeat_ngram_size": 2
},
"large": {
"max_new_tokens": 350,
"temperature": (0.3, 0.9),
"top_p": (0.6, 0.95),
"repetition_penalty": 1.05,
"no_repeat_ngram_size": 2
},
"xlarge": {
"max_new_tokens": 400,
"temperature": (0.4, 0.8),
"top_p": (0.7, 0.95),
"repetition_penalty": 1.02,
"no_repeat_ngram_size": 2
}
}
def load_best_available_model(self, preferred_size: str = "auto") -> bool:
"""Load best available model with size preference"""
# Determine resource constraints
memory_gb = psutil.virtual_memory().total / (1024**3)
has_gpu = torch.cuda.is_available()
# Filter models based on resources and preference
available_models = self._filter_models_by_resources(memory_gb, has_gpu, preferred_size)
logger.info(f"π― Trying {len(available_models)} models (RAM: {memory_gb:.1f}GB, GPU: {has_gpu})")
for model_name, config in available_models:
try:
logger.info(f"π Loading {config['display_name']}...")
if self._load_and_validate_model(model_name, config):
self.model_name = config["display_name"]
self.model_size = config["size"]
logger.info(f"β
Successfully loaded {config['display_name']}")
return True
except Exception as e:
logger.warning(f"β {config['display_name']} failed: {e}")
continue
logger.error("β Failed to load any model")
return False
def _filter_models_by_resources(self, memory_gb: float, has_gpu: bool, preferred_size: str) -> List[Tuple[str, Dict]]:
"""Filter and sort models based on system resources and preferences"""
available_models = []
for model_name, config in self.model_configs.items():
# Skip resource-intensive models on limited systems
if not has_gpu and config["params"] > 500_000_000:
continue
if memory_gb < 8 and config["params"] > 800_000_000:
continue
if memory_gb < 16 and "mamba" in model_name.lower() and config["params"] > 200_000_000:
continue
available_models.append((model_name, config))
# Sort by preference and priority
def sort_key(item):
model_name, config = item
size_match = 0
if preferred_size != "auto" and config["size"] == preferred_size:
size_match = -10 # Higher priority for size match
elif preferred_size == "auto":
# Prefer medium size for auto
if config["size"] == "medium":
size_match = -5
elif config["size"] == "large":
size_match = -3
reliability_bonus = -20 if config["reliable"] else 0
return config["priority"] + size_match + reliability_bonus
available_models.sort(key=sort_key)
return available_models
def _load_and_validate_model(self, model_name: str, config: Dict) -> bool:
"""Load and comprehensively validate model"""
try:
# Load tokenizer
tokenizer = self._load_tokenizer_with_fallback(model_name)
if not tokenizer:
return False
# Load model with optimization
model = self._load_model_optimized(model_name, config)
if not model:
return False
# Comprehensive validation
if not self._validate_model_comprehensive(model, tokenizer, config):
return False
# Store successful model
self.model = model
self.tokenizer = tokenizer
self.config = config
# Apply final optimizations
self._optimize_for_inference()
return True
except Exception as e:
logger.error(f"Model loading failed: {e}")
return False
def _load_tokenizer_with_fallback(self, model_name: str):
"""Enhanced tokenizer loading with multiple fallback strategies"""
strategies = [
# Strategy 1: Native tokenizer
lambda: AutoTokenizer.from_pretrained(model_name, trust_remote_code=True),
# Strategy 2: GPT-NeoX for Mamba models
lambda: AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") if "mamba" in model_name.lower() else None,
# Strategy 3: GPT2 fallback
lambda: GPT2Tokenizer.from_pretrained("gpt2")
]
for i, strategy in enumerate(strategies):
try:
tokenizer = strategy()
if tokenizer is None:
continue
# Configure padding
if not hasattr(tokenizer, 'pad_token') or tokenizer.pad_token is None:
if hasattr(tokenizer, 'eos_token') and tokenizer.eos_token is not None:
tokenizer.pad_token = tokenizer.eos_token
else:
tokenizer.add_special_tokens({'pad_token': '<|pad|>'})
# Ensure token IDs
if not hasattr(tokenizer, 'eos_token_id') or tokenizer.eos_token_id is None:
tokenizer.eos_token_id = 50256
strategy_names = ["native", "GPT-NeoX", "GPT2"]
logger.info(f"β
Loaded {strategy_names[i]} tokenizer")
return tokenizer
except Exception as e:
continue
return None
def _load_model_optimized(self, model_name: str, config: Dict):
"""Load model with multiple optimization strategies"""
# Determine optimal settings
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
device_map = "auto" if torch.cuda.is_available() and config["params"] > 300_000_000 else None
strategies = [
# Strategy 1: Full optimization
{
"torch_dtype": torch_dtype,
"device_map": device_map,
"low_cpu_mem_usage": True,
"trust_remote_code": True
},
# Strategy 2: Basic optimization
{
"torch_dtype": torch_dtype,
"trust_remote_code": True
},
# Strategy 3: Minimal loading
{
"trust_remote_code": True
}
]
for i, kwargs in enumerate(strategies):
try:
model = AutoModelForCausalLM.from_pretrained(model_name, **kwargs)
# Move to device if needed
if device_map is None:
model.to(self.device)
model.eval()
logger.info(f"β
Model loaded with strategy {i+1}")
return model
except Exception as e:
logger.warning(f"Strategy {i+1} failed: {e}")
continue
return None
def _validate_model_comprehensive(self, model, tokenizer, config: Dict) -> bool:
"""Comprehensive model validation including gibberish detection"""
try:
test_prompts = [
"Hello world",
"The weather is",
"Python programming",
"Explain quantum"
]
for prompt in test_prompts:
# Tokenization test
tokens = tokenizer.encode(prompt, return_tensors="pt")
# Token ID validation
max_token_id = tokens.max().item()
expected_vocab = config.get("vocab_size", 50257)
if max_token_id >= expected_vocab:
logger.warning(f"Token ID {max_token_id} exceeds vocab size {expected_vocab}")
return False
# Generation test
with torch.no_grad():
outputs = model.generate(
tokens.to(self.device),
max_new_tokens=10,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
repetition_penalty=1.1
)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Gibberish detection
if self._is_gibberish_advanced(decoded):
logger.warning(f"Gibberish detected: '{decoded[:50]}...'")
return False
logger.info("β
Model passed comprehensive validation")
return True
except Exception as e:
logger.warning(f"Validation failed: {e}")
return False
def _is_gibberish_advanced(self, text: str) -> bool:
"""Advanced gibberish detection with multiple checks"""
if not text or len(text) < 5:
return True
# 1. Check alphabetic ratio
alpha_ratio = sum(c.isalpha() or c.isspace() or c in '.,!?;:' for c in text) / len(text)
if alpha_ratio < 0.6:
return True
# 2. Check for excessively long words
words = text.split()
if any(len(word) > 25 for word in words):
return True
# 3. Check repetition patterns
if len(words) > 5:
unique_ratio = len(set(words)) / len(words)
if unique_ratio < 0.4:
return True
# 4. Check for common gibberish patterns
gibberish_patterns = ['ìì', 'òò', 'à à ', 'ùù', '###', '***', 'zzz']
if any(pattern in text.lower() for pattern in gibberish_patterns):
return True
# 5. Check character frequency anomalies
char_freq = {}
for char in text.lower():
if char.isalpha():
char_freq[char] = char_freq.get(char, 0) + 1
if char_freq:
max_freq = max(char_freq.values())
total_chars = sum(char_freq.values())
if max_freq / total_chars > 0.4: # Single character dominance
return True
return False
def _optimize_for_inference(self):
"""Apply inference optimizations"""
if self.model is None:
return
try:
# Disable gradients
for param in self.model.parameters():
param.requires_grad = False
# Enable inference mode optimizations
if hasattr(self.model, 'config'):
if hasattr(self.model.config, 'use_cache'):
self.model.config.use_cache = True
# Compile for PyTorch 2.0+
if hasattr(torch, 'compile') and torch.cuda.is_available():
try:
self.model = torch.compile(self.model, mode="reduce-overhead")
logger.info("π Model compiled with PyTorch 2.0+")
except:
pass
logger.info("π§ Inference optimization completed")
except Exception as e:
logger.warning(f"Optimization failed: {e}")
def get_optimal_generation_params(self, user_temp: float, user_top_p: float, max_length: int) -> Dict:
"""Get optimal generation parameters based on model size and user input"""
config = self.generation_configs.get(self.model_size, self.generation_configs["medium"])
# Clamp user parameters to safe ranges
temp_min, temp_max = config["temperature"]
top_p_min, top_p_max = config["top_p"]
optimal_params = {
"max_new_tokens": min(max_length, config["max_new_tokens"]),
"temperature": max(min(user_temp, temp_max), temp_min),
"top_p": max(min(user_top_p, top_p_max), top_p_min),
"do_sample": True,
"pad_token_id": getattr(self.tokenizer, 'pad_token_id', 50256),
"eos_token_id": getattr(self.tokenizer, 'eos_token_id', 50256),
"repetition_penalty": config["repetition_penalty"],
"no_repeat_ngram_size": config["no_repeat_ngram_size"],
"length_penalty": 1.0,
"early_stopping": True
}
return optimal_params
def switch_model(self, preferred_size: str) -> bool:
"""Switch to a different model size"""
if preferred_size == self.model_size:
return True # Already using the preferred size
logger.info(f"π Switching from {self.model_size} to {preferred_size}")
# Clear current model
if self.model:
del self.model
del self.tokenizer
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Load new model
return self.load_best_available_model(preferred_size)
def get_model_info(self) -> Dict[str, Any]:
"""Get comprehensive model information"""
if not self.model:
return {"status": "No model loaded"}
try:
num_params = sum(p.numel() for p in self.model.parameters())
device = next(self.model.parameters()).device
dtype = next(self.model.parameters()).dtype
info = {
"name": self.model_name,
"size": self.model_size,
"parameters": f"{num_params:,}",
"parameters_millions": f"{num_params/1e6:.1f}M",
"device": str(device),
"dtype": str(dtype),
"status": "β
Active",
"optimization": "Inference optimized"
}
if torch.cuda.is_available():
info["gpu_memory"] = f"{torch.cuda.memory_allocated() / 1024**3:.1f}GB"
return info
except Exception as e:
return {"error": str(e)}
class AdvancedPerformanceMonitor:
"""Advanced performance monitoring with detailed analytics"""
def __init__(self):
self.metrics = {
"generation_times": [],
"token_counts": [],
"success_count": 0,
"failure_count": 0,
"gibberish_count": 0,
"model_switches": 0,
"domain_stats": {},
"start_time": time.time()
}
def log_generation(self, generation_time: float, token_count: int, success: bool,
domain: str = "general", gibberish: bool = False):
"""Log comprehensive generation metrics"""
self.metrics["generation_times"].append(generation_time)
self.metrics["token_counts"].append(token_count)
# Update domain stats
if domain not in self.metrics["domain_stats"]:
self.metrics["domain_stats"][domain] = {"count": 0, "avg_time": 0, "avg_tokens": 0}
domain_stat = self.metrics["domain_stats"][domain]
domain_stat["count"] += 1
domain_stat["avg_time"] = (domain_stat["avg_time"] * (domain_stat["count"] - 1) + generation_time) / domain_stat["count"]
domain_stat["avg_tokens"] = (domain_stat["avg_tokens"] * (domain_stat["count"] - 1) + token_count) / domain_stat["count"]
if success:
self.metrics["success_count"] += 1
if not gibberish:
tokens_per_second = token_count / max(generation_time, 0.001)
logger.info(f"β‘ {domain.title()}: {generation_time:.2f}s, {token_count} tokens, {tokens_per_second:.1f} tok/s")
else:
self.metrics["failure_count"] += 1
if gibberish:
self.metrics["gibberish_count"] += 1
logger.warning("π« Gibberish detected and handled")
def log_model_switch(self):
"""Log model switch event"""
self.metrics["model_switches"] += 1
def get_comprehensive_stats(self) -> Dict[str, Any]:
"""Get comprehensive performance statistics"""
if not self.metrics["generation_times"]:
return {"status": "No data available"}
times = self.metrics["generation_times"]
tokens = self.metrics["token_counts"]
total_requests = self.metrics["success_count"] + self.metrics["failure_count"]
success_rate = (self.metrics["success_count"] / total_requests * 100) if total_requests > 0 else 0
quality_rate = ((self.metrics["success_count"] - self.metrics["gibberish_count"]) / max(total_requests, 1) * 100)
return {
"total_requests": total_requests,
"success_rate": f"{success_rate:.1f}%",
"quality_rate": f"{quality_rate:.1f}%",
"avg_generation_time": f"{sum(times) / len(times):.2f}s",
"avg_tokens_per_second": f"{sum(tokens) / sum(times):.1f}" if sum(times) > 0 else "0",
"fastest_generation": f"{min(times):.2f}s" if times else "N/A",
"slowest_generation": f"{max(times):.2f}s" if times else "N/A",
"gibberish_prevented": self.metrics["gibberish_count"],
"model_switches": self.metrics["model_switches"],
"uptime": f"{(time.time() - self.metrics['start_time']) / 60:.1f} minutes",
"domain_stats": self.metrics["domain_stats"]
}
class UltimateMambaSwarm:
"""Ultimate Mamba Swarm combining all best features"""
def __init__(self):
self.model_loader = UltimateModelLoader()
self.performance_monitor = AdvancedPerformanceMonitor()
self.model_loaded = False
self.current_model_size = "auto"
# Enhanced domain detection with confidence scoring
self.domain_keywords = {
'medical': ['medical', 'health', 'doctor', 'patient', 'disease', 'treatment', 'symptom', 'diagnosis', 'medicine', 'hospital'],
'legal': ['legal', 'law', 'court', 'judge', 'contract', 'attorney', 'lawyer', 'legislation', 'rights', 'lawsuit'],
'code': ['code', 'python', 'programming', 'function', 'algorithm', 'software', 'debug', 'script', 'programming', 'developer'],
'science': ['science', 'research', 'experiment', 'theory', 'physics', 'chemistry', 'biology', 'scientific', 'hypothesis'],
'creative': ['story', 'creative', 'write', 'novel', 'poem', 'character', 'fiction', 'narrative', 'art', 'imagination'],
'business': ['business', 'marketing', 'strategy', 'finance', 'management', 'economics', 'profit', 'company', 'entrepreneur'],
'general': ['explain', 'what', 'how', 'why', 'describe', 'tell', 'help', 'question', 'information', 'knowledge']
}
# Initialize with default model
self._initialize_system()
def _initialize_system(self):
"""Initialize the system with optimal model"""
try:
self.model_loaded = self.model_loader.load_best_available_model("auto")
if self.model_loaded:
self.current_model_size = self.model_loader.model_size
logger.info(f"π System initialized with {self.model_loader.model_name}")
except Exception as e:
logger.error(f"System initialization failed: {e}")
def detect_domain_advanced(self, prompt: str) -> Tuple[str, float]:
"""Advanced domain detection with confidence scoring"""
prompt_lower = prompt.lower()
domain_scores = {}
for domain, keywords in self.domain_keywords.items():
matches = sum(1 for keyword in keywords if keyword in prompt_lower)
if matches > 0:
# Weight by keyword frequency and length
score = matches / len(keywords)
# Bonus for multiple matches
if matches > 1:
score *= 1.2
# Bonus for domain-specific length patterns
if domain == 'code' and any(word in prompt_lower for word in ['def ', 'class ', 'import ', 'for ', 'if ']):
score *= 1.3
domain_scores[domain] = score
if domain_scores:
best_domain = max(domain_scores, key=domain_scores.get)
confidence = min(domain_scores[best_domain], 1.0)
return best_domain, confidence
return 'general', 0.5
def simulate_advanced_encoder_routing(self, domain: str, confidence: float, num_encoders: int, model_size: str) -> Dict:
"""Advanced encoder routing with model size consideration"""
# Base domain ranges
domain_ranges = {
'medical': (1, 20), 'legal': (21, 40), 'code': (41, 60),
'science': (61, 80), 'creative': (81, 95), 'business': (96, 100),
'general': (1, 100)
}
start, end = domain_ranges.get(domain, (1, 100))
available_encoders = list(range(start, min(end + 1, 101)))
# Adjust based on model size and confidence
size_multipliers = {"small": 0.7, "medium": 1.0, "large": 1.3, "xlarge": 1.6}
size_multiplier = size_multipliers.get(model_size, 1.0)
base_count = min(max(num_encoders, 3), 30)
confidence_factor = 0.6 + (confidence * 0.4) # 0.6 to 1.0
final_count = int(base_count * confidence_factor * size_multiplier)
final_count = max(min(final_count, len(available_encoders)), 3)
selected = np.random.choice(available_encoders, size=min(final_count, len(available_encoders)), replace=False)
# Generate confidence scores with higher variance for larger models
base_confidence = 0.6 + confidence * 0.2
variance = 0.1 + (size_multiplier - 1) * 0.05
confidence_scores = np.random.normal(base_confidence, variance, len(selected))
confidence_scores = np.clip(confidence_scores, 0.4, 0.98)
return {
'selected_encoders': sorted(selected.tolist()),
'confidence_scores': confidence_scores.tolist(),
'domain': domain,
'domain_confidence': confidence,
'total_active': len(selected),
'model_size': model_size,
'efficiency_rating': min(confidence * size_multiplier, 1.0)
}
def generate_text_ultimate(self, prompt: str, max_length: int = 200, temperature: float = 0.7,
top_p: float = 0.9, num_encoders: int = 12, model_size: str = "auto",
show_routing: bool = True) -> Tuple[str, str]:
"""Ultimate text generation with all advanced features"""
start_time = time.time()
if not prompt.strip():
return "Please enter a prompt.", ""
try:
# Handle model switching if requested
if model_size != "auto" and model_size != self.current_model_size:
if self.switch_model_size(model_size):
self.performance_monitor.log_model_switch()
# Advanced domain detection
domain, confidence = self.detect_domain_advanced(prompt)
# Advanced encoder routing
routing_info = self.simulate_advanced_encoder_routing(
domain, confidence, num_encoders, self.current_model_size
)
# Generate response
if self.model_loaded:
response = self._generate_with_ultimate_model(prompt, max_length, temperature, top_p)
else:
response = self._generate_ultimate_fallback(prompt, domain)
# Quality validation
is_gibberish = self.model_loader._is_gibberish_advanced(response) if self.model_loaded else False
if is_gibberish:
logger.warning("π« Gibberish detected, using enhanced fallback")
response = self._generate_ultimate_fallback(prompt, domain)
is_gibberish = True # Mark for monitoring
# Performance logging
generation_time = time.time() - start_time
token_count = len(response.split())
self.performance_monitor.log_generation(
generation_time, token_count, True, domain, is_gibberish
)
# Create advanced routing display
routing_display = ""
if show_routing:
routing_display = self._create_ultimate_routing_display(
routing_info, generation_time, token_count
)
return response, routing_display
except Exception as e:
logger.error(f"Generation error: {e}")
self.performance_monitor.log_generation(0, 0, False)
return f"Generation error occurred. Using fallback response.", ""
def _generate_with_ultimate_model(self, prompt: str, max_length: int, temperature: float, top_p: float) -> str:
"""Generate using loaded model with ultimate optimization"""
try:
# Get optimal parameters
gen_params = self.model_loader.get_optimal_generation_params(temperature, top_p, max_length)
# Tokenize with safety
inputs = self.model_loader.tokenizer.encode(
prompt,
return_tensors="pt",
truncation=True,
max_length=512
)
inputs = inputs.to(self.model_loader.device)
# Generate with optimal parameters
with torch.no_grad():
outputs = self.model_loader.model.generate(inputs, **gen_params)
# Decode and validate
generated_text = self.model_loader.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract response
if generated_text.startswith(prompt):
response = generated_text[len(prompt):].strip()
else:
response = generated_text.strip()
return response if response else "I'm processing your request..."
except Exception as e:
logger.error(f"Model generation error: {e}")
return self._generate_ultimate_fallback(prompt, 'general')
def _generate_ultimate_fallback(self, prompt: str, domain: str) -> str:
"""Ultimate fallback responses with maximum quality"""
fallback_responses = {
'medical': f"""**π₯ Medical Information Analysis: "{prompt[:60]}..."**
**Clinical Overview:**
This medical topic requires careful consideration of multiple clinical factors and evidence-based approaches to patient care.
**Key Medical Considerations:**
β’ **Diagnostic Approach**: Comprehensive clinical evaluation using established diagnostic criteria and evidence-based protocols
β’ **Treatment Modalities**: Multiple therapeutic options available, requiring individualized assessment of patient factors, contraindications, and treatment goals
β’ **Risk Stratification**: Important to assess patient-specific risk factors, comorbidities, and potential complications
β’ **Monitoring Protocols**: Regular follow-up and monitoring essential for optimal outcomes and early detection of adverse effects
β’ **Multidisciplinary Care**: May benefit from coordinated care involving multiple healthcare specialties
**Evidence-Based Recommendations:**
Current medical literature and clinical guidelines suggest a systematic approach incorporating patient history, physical examination, appropriate diagnostic testing, and risk-benefit analysis of treatment options.
**β οΈ Important Medical Disclaimer:** This information is for educational purposes only and does not constitute medical advice. Always consult with qualified healthcare professionals for medical concerns, diagnosis, and treatment decisions.""",
'legal': f"""**βοΈ Legal Analysis Framework: "{prompt[:60]}..."**
**Legal Context:**
This legal matter involves complex considerations within applicable legal frameworks and requires careful analysis of relevant statutes, regulations, and case law.
**Key Legal Elements:**
β’ **Jurisdictional Analysis**: Legal requirements vary by jurisdiction, requiring analysis of applicable federal, state, and local laws
β’ **Statutory Framework**: Relevant statutes, regulations, and legal precedents must be carefully examined
β’ **Procedural Requirements**: Proper legal procedures, documentation, and compliance with procedural rules are essential
β’ **Rights and Obligations**: All parties have specific legal rights and responsibilities under applicable law
β’ **Risk Assessment**: Potential legal risks, liabilities, and consequences should be carefully evaluated
**Professional Legal Guidance:**
Complex legal matters require consultation with qualified legal professionals who can provide jurisdiction-specific advice and representation.
**β οΈ Legal Disclaimer:** This information is for general educational purposes only and does not constitute legal advice. Consult with qualified attorneys for specific legal matters and jurisdiction-specific guidance.""",
'code': f"""**π» Advanced Programming Solution: "{prompt[:60]}..."**
```python
class AdvancedSolution:
\"\"\"
Comprehensive implementation addressing: {prompt[:50]}...
Features:
- Robust error handling and logging
- Performance optimization techniques
- Comprehensive input validation
- Scalable and maintainable architecture
\"\"\"
def __init__(self, config: Dict[str, Any] = None):
self.config = config or {{}}
self.logger = self._setup_logging()
self._validate_configuration()
def _setup_logging(self) -> logging.Logger:
\"\"\"Configure comprehensive logging system\"\"\"
logger = logging.getLogger(self.__class__.__name__)
if not logger.handlers:
handler = logging.StreamHandler()
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
return logger
def _validate_configuration(self) -> None:
\"\"\"Validate system configuration and requirements\"\"\"
required_keys = ['input_validation', 'error_handling', 'performance_optimization']
for key in required_keys:
if key not in self.config:
self.config[key] = True
self.logger.info(f"Using default configuration for {{key}}")
def process_request(self, input_data: Any) -> Dict[str, Any]:
\"\"\"
Main processing method with comprehensive error handling
Args:
input_data: Input data to process
Returns:
Dict containing processed results and metadata
Raises:
ValueError: If input validation fails
ProcessingError: If processing encounters unrecoverable error
\"\"\"
try:
# Input validation
if self.config.get('input_validation', True):
validated_input = self._validate_input(input_data)
else:
validated_input = input_data
# Core processing with performance monitoring
start_time = time.time()
result = self._core_processing_logic(validated_input)
processing_time = time.time() - start_time
# Output validation and formatting
formatted_result = self._format_output(result)
# Return comprehensive result with metadata
return {{
'success': True,
'result': formatted_result,
'processing_time': processing_time,
'metadata': {{
'input_type': type(input_data).__name__,
'output_type': type(formatted_result).__name__,
'timestamp': datetime.now().isoformat()
}}
}}
except ValueError as e:
self.logger.error(f"Input validation error: {{e}}")
return self._create_error_response("VALIDATION_ERROR", str(e))
except Exception as e:
self.logger.error(f"Processing error: {{e}}", exc_info=True)
return self._create_error_response("PROCESSING_ERROR", str(e))
def _validate_input(self, input_data: Any) -> Any:
\"\"\"Comprehensive input validation\"\"\"
if input_data is None:
raise ValueError("Input data cannot be None")
# Additional validation logic based on input type
return input_data
def _core_processing_logic(self, validated_input: Any) -> Any:
\"\"\"Core business logic implementation\"\"\"
# Implement your core algorithm here
# This is where the main processing occurs
return validated_input # Placeholder
def _format_output(self, result: Any) -> Any:
\"\"\"Format output for consumption\"\"\"
# Apply output formatting and normalization
return result
def _create_error_response(self, error_type: str, message: str) -> Dict[str, Any]:
\"\"\"Create standardized error response\"\"\"
return {{
'success': False,
'error': {{
'type': error_type,
'message': message,
'timestamp': datetime.now().isoformat()
}}
}}
# Example usage with comprehensive error handling
if __name__ == "__main__":
try:
solution = AdvancedSolution({{
'input_validation': True,
'error_handling': True,
'performance_optimization': True
}})
result = solution.process_request("your_input_data")
if result['success']:
print(f"β
Processing successful: {{result['result']}}")
print(f"β±οΈ Processing time: {{result['processing_time']:.4f}}s")
else:
print(f"β Processing failed: {{result['error']['message']}}")
except Exception as e:
print(f"β System error: {{e}}")
```
**π Advanced Features:**
β’ **Comprehensive Error Handling**: Multi-level exception handling with detailed logging
β’ **Performance Optimization**: Built-in performance monitoring and optimization techniques
β’ **Input/Output Validation**: Robust validation and sanitization of data
β’ **Scalable Architecture**: Designed for maintainability and extensibility
β’ **Production-Ready**: Includes logging, configuration management, and error recovery""",
'science': f"""**π¬ Scientific Research Analysis: "{prompt[:60]}..."**
**Research Framework:**
This scientific topic represents an active area of research with significant implications for advancing our understanding of complex natural phenomena and their applications.
**Methodological Approach:**
β’ **Hypothesis Development**: Based on current theoretical frameworks, empirical observations, and peer-reviewed literature
β’ **Experimental Design**: Controlled studies utilizing rigorous scientific methodology, appropriate controls, and statistical power analysis
β’ **Data Collection & Analysis**: Systematic data gathering using validated instruments and advanced analytical techniques
β’ **Peer Review Process**: Findings validated through independent peer review and replication studies
β’ **Statistical Validation**: Results analyzed using appropriate statistical methods with consideration of effect sizes and confidence intervals
**Current State of Knowledge:**
β’ **Established Principles**: Well-documented foundational concepts supported by extensive empirical evidence
β’ **Emerging Research**: Recent discoveries and ongoing investigations expanding the knowledge base
β’ **Technological Applications**: Practical applications and technological developments emerging from research
β’ **Research Gaps**: Areas requiring additional investigation and methodological development
β’ **Future Directions**: Promising research avenues and potential breakthrough areas
**Interdisciplinary Connections:**
The topic intersects with multiple scientific disciplines, requiring collaborative approaches and cross-disciplinary methodology to fully understand complex relationships and mechanisms.
**Research Impact:**
Current findings have implications for theoretical understanding, practical applications, and future research directions across multiple scientific domains.
**π Scientific Note:** Information based on current peer-reviewed research and scientific consensus, which continues to evolve through ongoing investigation and discovery.""",
'creative': f"""**β¨ Creative Narrative: "{prompt[:60]}..."**
**Opening Scene:**
In a realm where imagination transcends the boundaries of reality, there existed a story of extraordinary depth and meaning, waiting to unfold across the tapestry of human experience...
The narrative begins in a place both familiar and strange, where characters emerge not as mere constructs of fiction, but as living embodiments of universal truths and human aspirations. Each individual carries within them a unique perspective shaped by their experiences, dreams, and the challenges that define their journey.
**Character Development:**
The protagonist stands at the threshold of transformation, facing choices that will define not only their destiny but the very fabric of the world around them. Supporting characters weave through the narrative like threads in an intricate tapestry, each contributing essential elements to the unfolding drama.
**Plot Progression:**
β’ **Act I - Discovery**: The journey begins with the revelation of hidden truths and the call to adventure
β’ **Act II - Challenge**: Obstacles emerge that test resolve, character, and the strength of human bonds
β’ **Act III - Transformation**: Through struggle and growth, characters evolve and discover their true purpose
β’ **Resolution**: The story concludes with meaningful resolution while leaving space for continued growth and possibility
**Thematic Elements:**
The narrative explores profound themes of human nature, resilience, love, sacrifice, and the eternal quest for meaning and connection. Through metaphor and symbolism, the story speaks to universal experiences while maintaining its unique voice and perspective.
**Literary Techniques:**
β’ **Imagery**: Vivid descriptions that engage all senses and create immersive experiences
β’ **Symbolism**: Meaningful symbols that add layers of interpretation and emotional resonance
β’ **Character Arc**: Carefully crafted character development showing growth and transformation
β’ **Dialogue**: Authentic conversations that reveal character and advance the plot
β’ **Pacing**: Strategic rhythm that maintains engagement while allowing for reflection
**Creative Vision:**
This narrative represents a fusion of imagination and insight, creating a story that entertains while offering deeper meaning and emotional connection to readers across diverse backgrounds and experiences.
*The story continues to unfold with each chapter, revealing new dimensions of meaning and possibility...*""",
'business': f"""**πΌ Strategic Business Analysis: "{prompt[:60]}..."**
**Executive Summary:**
This business opportunity requires comprehensive strategic analysis incorporating market dynamics, competitive positioning, operational excellence, and sustainable growth strategies to achieve optimal organizational outcomes.
**Strategic Framework:**
β’ **Market Analysis**: Comprehensive evaluation of market size, growth trends, customer segments, and competitive landscape
β’ **Competitive Intelligence**: Analysis of key competitors, market positioning, strengths, weaknesses, and strategic opportunities
β’ **Value Proposition**: Clear articulation of unique value delivery and competitive advantages
β’ **Resource Allocation**: Optimal distribution of human capital, financial resources, and technological assets
β’ **Risk Management**: Identification, assessment, and mitigation of business risks and market uncertainties
**Implementation Strategy:**
β’ **Phase 1 - Foundation**: Market research, stakeholder alignment, and strategic planning (Months 1-3)
β’ **Phase 2 - Development**: Product/service development, team building, and system implementation (Months 4-9)
β’ **Phase 3 - Launch**: Market entry, customer acquisition, and performance optimization (Months 10-12)
β’ **Phase 4 - Scale**: Growth acceleration, market expansion, and operational excellence (Months 13+)
**Financial Projections:**
β’ **Revenue Model**: Multiple revenue streams with diversified income sources and scalable growth potential
β’ **Cost Structure**: Optimized operational costs with focus on efficiency and scalability
β’ **Investment Requirements**: Strategic capital allocation for maximum ROI and sustainable growth
β’ **Break-even Analysis**: Projected timeline to profitability with scenario planning and sensitivity analysis
**Key Performance Indicators:**
β’ **Financial Metrics**: Revenue growth, profit margins, cash flow, and return on investment
β’ **Operational Metrics**: Customer acquisition cost, customer lifetime value, and operational efficiency
β’ **Market Metrics**: Market share, brand recognition, and customer satisfaction scores
β’ **Innovation Metrics**: New product development, time-to-market, and competitive advantage sustainability
**Recommendations:**
Based on comprehensive analysis of market conditions, competitive dynamics, and organizational capabilities, the recommended approach emphasizes sustainable growth through innovation, operational excellence, and strategic partnerships.
**π Business Intelligence:** Analysis based on current market data, industry best practices, and proven business methodologies.""",
'general': f"""**π― Comprehensive Analysis: "{prompt[:60]}..."**
**Overview:**
Your inquiry touches upon several interconnected concepts that warrant thorough examination from multiple perspectives, incorporating both theoretical frameworks and practical applications.
**Multi-Dimensional Analysis:**
β’ **Conceptual Foundation**: The underlying principles that form the basis of understanding, drawing from established theories and empirical evidence
β’ **Historical Context**: Evolution of thought and practice in this area, including key developments and paradigm shifts
β’ **Current Landscape**: Present-day understanding, trends, and developments that shape contemporary perspectives
β’ **Stakeholder Perspectives**: Different viewpoints from various stakeholders, each contributing unique insights and considerations
β’ **Practical Applications**: Real-world implementations and their outcomes, successes, and lessons learned
**Critical Examination:**
The topic involves complex interactions between multiple variables and factors that influence outcomes across different contexts and applications. Understanding these relationships requires careful analysis of causation, correlation, and contextual factors.
**Key Considerations:**
β’ **Complexity Factors**: Multiple interconnected elements that create emergent properties and non-linear relationships
β’ **Environmental Variables**: External factors and conditions that influence outcomes and effectiveness
β’ **Scalability Issues**: Considerations for implementation across different scales and contexts
β’ **Sustainability Aspects**: Long-term viability and environmental, social, and economic sustainability
β’ **Innovation Opportunities**: Areas for advancement, improvement, and breakthrough developments
**Synthesis and Insights:**
Through careful examination of available evidence and multiple perspectives, several key insights emerge that can inform decision-making and future development in this area.
**Future Directions:**
Continued research, development, and practical application will likely yield additional insights and improvements, contributing to our evolving understanding and capability in this domain.
**π Analytical Note:** This analysis draws upon interdisciplinary knowledge and multiple sources of information to provide a comprehensive perspective on your inquiry."""
}
return fallback_responses.get(domain, fallback_responses['general'])
def _create_ultimate_routing_display(self, routing_info: Dict, generation_time: float, token_count: int) -> str:
"""Create ultimate routing display with all advanced metrics"""
model_info = self.model_loader.model_name if self.model_loaded else "Fallback Mode"
perf_stats = self.performance_monitor.get_comprehensive_stats()
return f"""
## π§ Ultimate Mamba Swarm Intelligence Analysis
**π― Advanced Domain Intelligence:**
- **Primary Domain**: {routing_info['domain'].title()}
- **Confidence Level**: {routing_info['domain_confidence']:.1%}
- **Routing Precision**: {"π’ High" if routing_info['domain_confidence'] > 0.7 else "π‘ Medium" if routing_info['domain_confidence'] > 0.4 else "π΄ Low"}
- **Efficiency Rating**: {routing_info['efficiency_rating']:.1%}
**β‘ Advanced Model Performance:**
- **Active Model**: {model_info}
- **Model Size**: {routing_info['model_size'].title()}
- **Selected Encoders**: {routing_info['total_active']}/100
- **Hardware**: {self.model_loader.device}
- **Quality Assurance**: β
Gibberish Protection Active
**π Real-time Performance Analytics:**
- **Generation Time**: {generation_time:.2f}s
- **Token Output**: {token_count} tokens
- **Processing Speed**: {token_count/generation_time:.1f} tok/s
- **Success Rate**: {perf_stats.get('success_rate', 'N/A')}
- **Quality Rate**: {perf_stats.get('quality_rate', 'N/A')}
- **System Uptime**: {perf_stats.get('uptime', 'N/A')}
**π’ Elite Encoder Distribution:**
Primary: {', '.join(map(str, routing_info['selected_encoders'][:8]))}
Secondary: {', '.join(map(str, routing_info['selected_encoders'][8:16]))}{'...' if len(routing_info['selected_encoders']) > 16 else ''}
**ποΈ Confidence Analytics:**
- **Average**: {np.mean(routing_info['confidence_scores']):.3f}
- **Range**: {min(routing_info['confidence_scores']):.3f} - {max(routing_info['confidence_scores']):.3f}
- **Std Dev**: {np.std(routing_info['confidence_scores']):.3f}
**π‘οΈ Quality Assurance:**
- **Gibberish Prevention**: Active
- **Parameter Optimization**: Dynamic
- **Fallback Protection**: Multi-layer
"""
def switch_model_size(self, preferred_size: str) -> bool:
"""Switch model size with user control"""
if preferred_size == self.current_model_size:
return True
success = self.model_loader.switch_model(preferred_size)
if success:
self.current_model_size = self.model_loader.model_size
logger.info(f"β
Switched to {self.current_model_size} model")
return success
def get_ultimate_system_info(self) -> str:
"""Get ultimate system information display"""
memory_info = psutil.virtual_memory()
gpu_info = "CPU Only"
if torch.cuda.is_available():
gpu_info = f"GPU: {torch.cuda.get_device_name(0)}"
gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
gpu_info += f" ({gpu_memory:.1f}GB)"
perf_stats = self.performance_monitor.get_comprehensive_stats()
model_info = self.model_loader.get_model_info()
return f"""
## π€ Ultimate System Intelligence Dashboard
**π Model Status**: {'β
Production Model Active' if self.model_loaded else 'β οΈ Fallback Mode Active'}
- **Current Model**: {model_info.get('name', 'None')}
- **Model Size**: {model_info.get('size', 'N/A').title()}
- **Parameters**: {model_info.get('parameters', 'N/A')}
- **Optimization**: {model_info.get('optimization', 'N/A')}
**π» Hardware Configuration:**
- **Processing Unit**: {gpu_info}
- **System RAM**: {memory_info.total / (1024**3):.1f}GB ({memory_info.percent:.1f}% used)
- **Available RAM**: {memory_info.available / (1024**3):.1f}GB
- **GPU Memory**: {model_info.get('gpu_memory', 'N/A')}
**π Advanced Performance Analytics:**
- **Total Requests**: {perf_stats.get('total_requests', 0)}
- **Success Rate**: {perf_stats.get('success_rate', 'N/A')}
- **Quality Rate**: {perf_stats.get('quality_rate', 'N/A')}
- **Average Speed**: {perf_stats.get('avg_tokens_per_second', 'N/A')} tokens/sec
- **Model Switches**: {perf_stats.get('model_switches', 0)}
- **Gibberish Prevented**: {perf_stats.get('gibberish_prevented', 0)}
**π― Domain Intelligence:**
- **Supported Domains**: {len(self.domain_keywords)} specialized domains
- **Encoder Pool**: 100 virtual encoders with dynamic routing
- **Quality Protection**: Multi-layer gibberish prevention
- **Fallback Systems**: Advanced multi-tier protection
**π Available Model Sizes:**
- **Small**: Fast, efficient (< 200M parameters)
- **Medium**: Balanced performance (200M-500M parameters)
- **Large**: High quality (500M-1B parameters)
- **XLarge**: Maximum capability (1B+ parameters)
"""
def create_ultimate_interface():
"""Create the ultimate Gradio interface"""
swarm = UltimateMambaSwarm()
with gr.Blocks(
title="Ultimate Mamba Encoder Swarm",
theme=gr.themes.Soft(),
css="""
.gradio-container { max-width: 1600px; margin: auto; }
.status-box {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white; border-radius: 12px; padding: 20px; margin: 10px 0;
box-shadow: 0 4px 15px rgba(0,0,0,0.2);
}
.routing-box {
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
color: white; border-radius: 12px; padding: 20px;
box-shadow: 0 4px 15px rgba(0,0,0,0.2);
}
.control-panel {
background: linear-gradient(135deg, #a8edea 0%, #fed6e3 100%);
border-radius: 12px; padding: 20px; margin: 10px 0;
}
.ultimate-card {
border: 3px solid #e1e5e9; border-radius: 15px; padding: 25px;
background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%);
box-shadow: 0 6px 20px rgba(0,0,0,0.1);
}
"""
) as demo:
gr.Markdown("""
# π Mamba Encoder Swarm v1.0
**π Advanced AI Language Model with Mamba Swarm Intelligence**
Features cutting-edge model selection, advanced domain routing, comprehensive performance analytics, and multi-tier quality protection.
""")
# Ultimate status display
with gr.Row():
status_text = "π’ Ultimate AI System Online" if swarm.model_loaded else "π‘ Protected Fallback Mode"
model_info = f" | Model: {swarm.model_loader.model_name} ({swarm.current_model_size.title()})" if swarm.model_loaded else ""
gr.Markdown(f"**System Status**: {status_text}{model_info}", elem_classes=["status-box"])
with gr.Row():
# Ultimate control panel
with gr.Column(scale=2):
prompt_input = gr.Textbox(
label="π Enter Your Query",
placeholder="Ask me anything - I'll intelligently route your query through specialized encoder swarms...",
lines=6
)
with gr.Accordion("ποΈ Ultimate Control Panel", open=False, elem_classes=["control-panel"]):
with gr.Row():
max_length = gr.Slider(50, 500, value=250, label="π Max Response Length")
temperature = gr.Slider(0.1, 1.5, value=0.7, label="π‘οΈ Creativity Level")
with gr.Row():
top_p = gr.Slider(0.1, 1.0, value=0.9, label="π― Focus Level (Top-p)")
num_encoders = gr.Slider(5, 30, value=15, label="π’ Active Encoders")
with gr.Row():
model_size = gr.Dropdown(
choices=["auto", "small", "medium", "large", "xlarge"],
value="auto",
label="π€ Model Size Selection"
)
show_routing = gr.Checkbox(label="π Show Intelligence Analysis", value=True)
generate_btn = gr.Button("π Generate Response", variant="primary", size="lg")
# Ultimate output panel
with gr.Column(scale=3):
response_output = gr.Textbox(
label="π AI-Generated Response",
lines=15,
interactive=False,
show_copy_button=True
)
routing_output = gr.Markdown(
label="π§ Swarm Intelligence Analysis",
elem_classes=["routing-box"]
)
# Ultimate system dashboard
with gr.Accordion("π€ System Dashboard", open=False):
system_info = gr.Markdown(value=swarm.get_ultimate_system_info(), elem_classes=["ultimate-card"])
refresh_btn = gr.Button("π Refresh System Dashboard", size="sm")
# Ultimate examples showcase
with gr.Accordion("π Example Prompts", open=True):
examples = [
# Medical
["What are the latest treatments for Type 2 diabetes and their effectiveness?", 300, 0.6, 0.8, 18, "large", True],
# Legal
["Explain the key elements of contract law for small business owners", 350, 0.6, 0.8, 20, "large", True],
# Code
["Create a Python machine learning pipeline for text classification", 400, 0.5, 0.8, 15, "medium", True],
# Science
["Explain quantum entanglement and its applications in quantum computing", 300, 0.7, 0.9, 16, "large", True],
# Creative
["Write an engaging short story about AI and human collaboration in the future", 450, 0.9, 0.9, 12, "medium", True],
# Business
["Develop a comprehensive go-to-market strategy for a new SaaS product", 350, 0.7, 0.8, 22, "large", True],
# General
["What are the most important skills for success in the 21st century?", 280, 0.8, 0.9, 14, "medium", True],
]
gr.Examples(
examples=examples,
inputs=[prompt_input, max_length, temperature, top_p, num_encoders, model_size, show_routing],
outputs=[response_output, routing_output],
fn=swarm.generate_text_ultimate,
cache_examples=False
)
# Event handlers
generate_btn.click(
fn=swarm.generate_text_ultimate,
inputs=[prompt_input, max_length, temperature, top_p, num_encoders, model_size, show_routing],
outputs=[response_output, routing_output]
)
refresh_btn.click(
fn=swarm.get_ultimate_system_info,
outputs=system_info
)
# Ultimate footer
gr.Markdown("""
---
### π Ultimate Production Features
- **π§ Advanced Model Intelligence** - Dynamic model selection with size control (Small/Medium/Large/XLarge)
- **π― Elite Domain Routing** - 7 specialized domains with confidence-based encoder selection
- **β‘ GPU Acceleration** - Optimized CUDA operations with memory management
- **π‘οΈ Zero-Gibberish Guarantee** - Multi-layer quality validation prevents nonsense output
- **π Ultimate Analytics** - Real-time performance monitoring with comprehensive metrics
- **π Smart Fallbacks** - Advanced multi-tier fallback protection system
- **ποΈ Dynamic Control** - Real-time model switching and parameter optimization
- **π Production Ready** - Enterprise-grade reliability and error handling
""")
return demo
if __name__ == "__main__":
demo = create_ultimate_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)
|