Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForImageClassification, AutoProcessor | |
import torch | |
# Load the model and processor | |
model_name = "DeathDaDev/Materializer" | |
processor = AutoProcessor.from_pretrained(model_name) | |
model = AutoModelForImageClassification.from_pretrained(model_name) | |
# Define the prediction function | |
def classify_image(image): | |
# Preprocess the image | |
inputs = processor(images=image, return_tensors="pt") | |
# Perform inference | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
# Get the predicted class | |
predicted_class_idx = logits.argmax(-1).item() | |
return model.config.id2label[predicted_class_idx] | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=classify_image, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs=gr.outputs.Label(num_top_classes=3), | |
title="Image Classification with Materializer", | |
description="Upload an image to classify it using the Materializer model." | |
) | |
# Launch the interface | |
iface.launch() | |