Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,19 +10,33 @@ import os
|
|
10 |
os.environ["FAL_KEY"] = "b6fa8d06-4225-4ec3-9aaf-4d01e960d899:cc6a52d0fc818c6f892b2760fd341ee4"
|
11 |
fal_client.api_key = os.environ["FAL_KEY"]
|
12 |
|
13 |
-
#
|
14 |
base_model_paths = {
|
15 |
-
"
|
16 |
-
"
|
17 |
"Deliberate": "Yntec/Deliberate",
|
18 |
-
"
|
19 |
-
"
|
20 |
-
"
|
21 |
}
|
22 |
|
23 |
-
|
|
|
24 |
"""
|
25 |
Submit the image generation process using the fal_client's submit method with the ip-adapter-face-id model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
"""
|
27 |
try:
|
28 |
handler = fal_client.submit(
|
@@ -35,11 +49,13 @@ async def generate_image(image_url: str, prompt: str, negative_prompt: str, mode
|
|
35 |
"seed": seed,
|
36 |
"guidance_scale": guidance_scale,
|
37 |
"num_inference_steps": num_inference_steps,
|
38 |
-
"num_samples":
|
39 |
"width": width,
|
40 |
"height": height,
|
41 |
-
"
|
42 |
-
"
|
|
|
|
|
43 |
},
|
44 |
)
|
45 |
# Retrieve the result synchronously
|
@@ -53,45 +69,34 @@ async def generate_image(image_url: str, prompt: str, negative_prompt: str, mode
|
|
53 |
print(f"Error generating image: {e}")
|
54 |
return None
|
55 |
|
|
|
56 |
def fetch_image_from_url(url: str) -> Image.Image:
|
57 |
-
"""
|
58 |
-
Download the image from the given URL and return it as a PIL Image.
|
59 |
-
"""
|
60 |
response = requests.get(url)
|
61 |
return Image.open(io.BytesIO(response.content))
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
Asynchronous function to handle image upload, prompt inputs and generate the final image.
|
66 |
-
"""
|
67 |
-
# Upload the image and get a valid URL
|
68 |
image_url = await upload_image_to_server(image)
|
69 |
|
70 |
if not image_url:
|
71 |
return None
|
72 |
|
73 |
-
|
74 |
-
image_info = await generate_image(image_url, prompt, negative_prompt, model_type, base_model, seed, guidance_scale, num_inference_steps, num_samples, width, height)
|
75 |
|
76 |
if image_info and "url" in image_info:
|
77 |
return fetch_image_from_url(image_info["url"]), image_info # Return both the image and the metadata
|
78 |
|
79 |
return None, None
|
80 |
|
|
|
81 |
async def upload_image_to_server(image: Image.Image) -> str:
|
82 |
-
"""
|
83 |
-
Upload an image to the fal_client and return the uploaded image URL.
|
84 |
-
"""
|
85 |
-
# Convert PIL image to byte stream for upload
|
86 |
byte_arr = io.BytesIO()
|
87 |
image.save(byte_arr, format='PNG')
|
88 |
byte_arr.seek(0)
|
89 |
|
90 |
-
# Convert BytesIO to a file-like object that fal_client can handle
|
91 |
with open("temp_image.png", "wb") as f:
|
92 |
f.write(byte_arr.getvalue())
|
93 |
|
94 |
-
# Upload the image using fal_client's asynchronous method
|
95 |
try:
|
96 |
upload_url = await fal_client.upload_file_async("temp_image.png")
|
97 |
return upload_url
|
@@ -99,84 +104,56 @@ async def upload_image_to_server(image: Image.Image) -> str:
|
|
99 |
print(f"Error uploading image: {e}")
|
100 |
return ""
|
101 |
|
|
|
102 |
def change_style(style):
|
103 |
-
"""
|
104 |
-
Changes the style for 'Photorealistic' or 'Stylized' generation type.
|
105 |
-
"""
|
106 |
if style == "Photorealistic":
|
107 |
return gr.update(value=True), gr.update(value=1.3), gr.update(value=1.0)
|
108 |
else:
|
109 |
return gr.update(value=True), gr.update(value=0.1), gr.update(value=0.8)
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
Wrapper function to run asynchronous code in a synchronous environment like Gradio.
|
114 |
-
"""
|
115 |
loop = asyncio.new_event_loop()
|
116 |
asyncio.set_event_loop(loop)
|
117 |
|
118 |
-
|
119 |
-
|
|
|
|
|
120 |
if result_image:
|
121 |
-
# Display both the image and metadata
|
122 |
metadata = f"File Name: {image_info['file_name']}\nFile Size: {image_info['file_size']} bytes\nDimensions: {image_info['width']}x{image_info['height']} px\nSeed: {image_info.get('seed', 'N/A')}"
|
123 |
return result_image, metadata
|
124 |
return None, "Error generating image"
|
125 |
|
126 |
-
# Gradio
|
127 |
with gr.Blocks() as demo:
|
128 |
gr.Markdown("## Image Generation with Fal API and Gradio")
|
129 |
|
130 |
with gr.Row():
|
131 |
with gr.Column():
|
132 |
-
# Image input
|
133 |
image_input = gr.Image(label="Upload Image", type="pil")
|
134 |
-
|
135 |
-
# Textbox for prompt
|
136 |
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe the image you want to generate", lines=2)
|
137 |
-
|
138 |
-
# Textbox for negative prompt
|
139 |
negative_prompt_input = gr.Textbox(label="Negative Prompt", placeholder="Describe elements to avoid", lines=2)
|
140 |
-
|
141 |
-
# Radio buttons for model type (Photorealistic or Stylized)
|
142 |
style = gr.Radio(label="Generation type", choices=["Photorealistic", "Stylized"], value="Photorealistic")
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
# Guidance scale slider
|
151 |
-
guidance_scale = gr.Slider(label="Guidance Scale", value=7.5, step=0.1, minimum=1, maximum=20)
|
152 |
-
|
153 |
-
# Inference steps slider
|
154 |
-
num_inference_steps = gr.Slider(label="Number of Inference Steps", value=50, step=1, minimum=10, maximum=100)
|
155 |
-
|
156 |
-
# Samples slider
|
157 |
-
num_samples = gr.Slider(label="Number of Samples", value=4, step=1, minimum=1, maximum=10)
|
158 |
-
|
159 |
-
# Image dimensions sliders
|
160 |
-
width = gr.Slider(label="Width", value=1024, step=64, minimum=256, maximum=1024)
|
161 |
-
height = gr.Slider(label="Height", value=1024, step=64, minimum=256, maximum=1024)
|
162 |
-
|
163 |
-
# Button to trigger image generation
|
164 |
generate_button = gr.Button("Generate Image")
|
165 |
|
166 |
with gr.Column():
|
167 |
-
# Display generated image and metadata
|
168 |
generated_image = gr.Image(label="Generated Image")
|
169 |
metadata_output = gr.Textbox(label="Image Metadata", interactive=False, lines=6)
|
170 |
|
171 |
-
# Style change functionality
|
172 |
-
style.change(fn=change_style, inputs=style, outputs=[guidance_scale, num_samples, width])
|
173 |
-
|
174 |
-
# Define the interaction between inputs and output
|
175 |
generate_button.click(
|
176 |
fn=gradio_interface,
|
177 |
-
inputs=[image_input, prompt_input, negative_prompt_input,
|
178 |
outputs=[generated_image, metadata_output]
|
179 |
)
|
180 |
|
181 |
-
|
|
|
182 |
demo.launch()
|
|
|
10 |
os.environ["FAL_KEY"] = "b6fa8d06-4225-4ec3-9aaf-4d01e960d899:cc6a52d0fc818c6f892b2760fd341ee4"
|
11 |
fal_client.api_key = os.environ["FAL_KEY"]
|
12 |
|
13 |
+
# Base model paths for model switching
|
14 |
base_model_paths = {
|
15 |
+
"RealisticVisionV4": "SG161222/Realistic_Vision_V4.0_noVAE",
|
16 |
+
"RealisticVisionV6": "SG161222/Realistic_Vision_V6.0_B1_noVAE",
|
17 |
"Deliberate": "Yntec/Deliberate",
|
18 |
+
"DeliberateV2": "Yntec/Deliberate2",
|
19 |
+
"Dreamshaper8": "Lykon/dreamshaper-8",
|
20 |
+
"EpicRealism": "emilianJR/epiCRealism"
|
21 |
}
|
22 |
|
23 |
+
# Updated function to include the API call to the Fal model
|
24 |
+
async def generate_image(image_url: str, prompt: str, negative_prompt: str, model_type: str, base_model: str, seed: int, guidance_scale: float, num_inference_steps: int, width: int, height: int):
|
25 |
"""
|
26 |
Submit the image generation process using the fal_client's submit method with the ip-adapter-face-id model.
|
27 |
+
Arguments:
|
28 |
+
image_url: URL of the input image to use.
|
29 |
+
prompt: Text prompt for generating the image.
|
30 |
+
negative_prompt: Text for negative prompt to avoid unwanted characteristics in the output.
|
31 |
+
model_type: Model type to use.
|
32 |
+
base_model: Base model to use for image generation.
|
33 |
+
seed: Seed for random generation.
|
34 |
+
guidance_scale: CFG scale for how closely the model sticks to the prompt.
|
35 |
+
num_inference_steps: Number of inference steps.
|
36 |
+
width: Width of the generated image.
|
37 |
+
height: Height of the generated image.
|
38 |
+
Returns:
|
39 |
+
The URL of the generated image along with other attributes like file size, dimensions, etc., or None if failed.
|
40 |
"""
|
41 |
try:
|
42 |
handler = fal_client.submit(
|
|
|
49 |
"seed": seed,
|
50 |
"guidance_scale": guidance_scale,
|
51 |
"num_inference_steps": num_inference_steps,
|
52 |
+
"num_samples": 1, # Adjusted to 1 sample
|
53 |
"width": width,
|
54 |
"height": height,
|
55 |
+
"face_id_det_size": 640,
|
56 |
+
"base_1_5_model_repo": base_model_paths[base_model], # Base model
|
57 |
+
"base_sdxl_model_repo": "SG161222/RealVisXL_V3.0",
|
58 |
+
"face_images_data_url": None
|
59 |
},
|
60 |
)
|
61 |
# Retrieve the result synchronously
|
|
|
69 |
print(f"Error generating image: {e}")
|
70 |
return None
|
71 |
|
72 |
+
# Fetch the image from the given URL
|
73 |
def fetch_image_from_url(url: str) -> Image.Image:
|
|
|
|
|
|
|
74 |
response = requests.get(url)
|
75 |
return Image.open(io.BytesIO(response.content))
|
76 |
|
77 |
+
# Process input images and handle the image generation
|
78 |
+
async def process_inputs(image: Image.Image, prompt: str, negative_prompt: str, model_type: str, base_model: str, seed: int, guidance_scale: float, num_inference_steps: int, width: int, height: int):
|
|
|
|
|
|
|
79 |
image_url = await upload_image_to_server(image)
|
80 |
|
81 |
if not image_url:
|
82 |
return None
|
83 |
|
84 |
+
image_info = await generate_image(image_url, prompt, negative_prompt, model_type, base_model, seed, guidance_scale, num_inference_steps, width, height)
|
|
|
85 |
|
86 |
if image_info and "url" in image_info:
|
87 |
return fetch_image_from_url(image_info["url"]), image_info # Return both the image and the metadata
|
88 |
|
89 |
return None, None
|
90 |
|
91 |
+
# Upload image to server
|
92 |
async def upload_image_to_server(image: Image.Image) -> str:
|
|
|
|
|
|
|
|
|
93 |
byte_arr = io.BytesIO()
|
94 |
image.save(byte_arr, format='PNG')
|
95 |
byte_arr.seek(0)
|
96 |
|
|
|
97 |
with open("temp_image.png", "wb") as f:
|
98 |
f.write(byte_arr.getvalue())
|
99 |
|
|
|
100 |
try:
|
101 |
upload_url = await fal_client.upload_file_async("temp_image.png")
|
102 |
return upload_url
|
|
|
104 |
print(f"Error uploading image: {e}")
|
105 |
return ""
|
106 |
|
107 |
+
# Change style between Photorealistic and Stylized
|
108 |
def change_style(style):
|
|
|
|
|
|
|
109 |
if style == "Photorealistic":
|
110 |
return gr.update(value=True), gr.update(value=1.3), gr.update(value=1.0)
|
111 |
else:
|
112 |
return gr.update(value=True), gr.update(value=0.1), gr.update(value=0.8)
|
113 |
|
114 |
+
# Gradio Interface
|
115 |
+
def gradio_interface(image, prompt, negative_prompt, model_type, base_model, seed, guidance_scale, num_inference_steps, width, height):
|
|
|
|
|
116 |
loop = asyncio.new_event_loop()
|
117 |
asyncio.set_event_loop(loop)
|
118 |
|
119 |
+
result_image, image_info = loop.run_until_complete(
|
120 |
+
process_inputs(image, prompt, negative_prompt, model_type, base_model, seed, guidance_scale, num_inference_steps, width, height)
|
121 |
+
)
|
122 |
+
|
123 |
if result_image:
|
|
|
124 |
metadata = f"File Name: {image_info['file_name']}\nFile Size: {image_info['file_size']} bytes\nDimensions: {image_info['width']}x{image_info['height']} px\nSeed: {image_info.get('seed', 'N/A')}"
|
125 |
return result_image, metadata
|
126 |
return None, "Error generating image"
|
127 |
|
128 |
+
# Main Gradio App
|
129 |
with gr.Blocks() as demo:
|
130 |
gr.Markdown("## Image Generation with Fal API and Gradio")
|
131 |
|
132 |
with gr.Row():
|
133 |
with gr.Column():
|
|
|
134 |
image_input = gr.Image(label="Upload Image", type="pil")
|
|
|
|
|
135 |
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe the image you want to generate", lines=2)
|
|
|
|
|
136 |
negative_prompt_input = gr.Textbox(label="Negative Prompt", placeholder="Describe elements to avoid", lines=2)
|
|
|
|
|
137 |
style = gr.Radio(label="Generation type", choices=["Photorealistic", "Stylized"], value="Photorealistic")
|
138 |
+
model_type = gr.Dropdown(label="Model Type", choices=["1_5-v1", "SDXL-v2-plus", "1_5-auraface-v1"], value="SDXL-v2-plus")
|
139 |
+
base_model = gr.Dropdown(label="Base Model", choices=list(base_model_paths.keys()), value="RealisticVisionV4")
|
140 |
+
seed_input = gr.Slider(label="Seed", value=42, minimum=0, maximum=1000, step=1)
|
141 |
+
guidance_scale_input = gr.Slider(label="Guidance Scale", value=7.5, minimum=1.0, maximum=20.0, step=0.1)
|
142 |
+
num_inference_steps_input = gr.Slider(label="Inference Steps", value=50, minimum=10, maximum=100, step=1)
|
143 |
+
width_input = gr.Slider(label="Width", value=1024, minimum=512, maximum=1024, step=64)
|
144 |
+
height_input = gr.Slider(label="Height", value=1024, minimum=512, maximum=1024, step=64)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
generate_button = gr.Button("Generate Image")
|
146 |
|
147 |
with gr.Column():
|
|
|
148 |
generated_image = gr.Image(label="Generated Image")
|
149 |
metadata_output = gr.Textbox(label="Image Metadata", interactive=False, lines=6)
|
150 |
|
|
|
|
|
|
|
|
|
151 |
generate_button.click(
|
152 |
fn=gradio_interface,
|
153 |
+
inputs=[image_input, prompt_input, negative_prompt_input, model_type, base_model, seed_input, guidance_scale_input, num_inference_steps_input, width_input, height_input],
|
154 |
outputs=[generated_image, metadata_output]
|
155 |
)
|
156 |
|
157 |
+
style.change(fn=change_style, inputs=style, outputs=[model_type, guidance_scale_input, num_inference_steps_input])
|
158 |
+
|
159 |
demo.launch()
|