File size: 7,993 Bytes
8d02f67
85330fa
a60d15c
85330fa
 
 
02269e1
85330fa
 
 
 
 
5dc51ba
c10f43d
37faab2
5dc51ba
37faab2
 
 
5dc51ba
 
c10f43d
85330fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02269e1
5dc51ba
 
 
 
 
 
 
 
 
 
a60d15c
5dc51ba
 
85330fa
 
 
 
 
 
 
7f4b639
5dc51ba
 
 
 
 
 
85330fa
 
 
 
 
 
 
02269e1
 
85330fa
02269e1
85330fa
02269e1
85330fa
02269e1
 
 
85330fa
02269e1
7f4b639
85330fa
 
02269e1
85330fa
02269e1
7f4b639
85330fa
02269e1
85330fa
 
 
 
02269e1
85330fa
02269e1
85330fa
 
 
 
 
 
5dc51ba
85330fa
 
 
 
5dc51ba
85330fa
 
 
 
 
 
02269e1
 
 
85330fa
 
 
02269e1
 
 
85330fa
02269e1
5dc51ba
85330fa
 
02269e1
 
85330fa
7f4b639
 
 
 
 
85330fa
 
 
02269e1
 
85330fa
 
02269e1
7f4b639
02269e1
85330fa
 
02269e1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
import spaces
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
from transformers import AutoFeatureExtractor
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
from insightface.utils import face_align
import gradio as gr
import cv2

base_model_paths = {
    "RealisticVisionV4": "SG161222/Realistic_Vision_V4.0_noVAE",
    "RealisticVisionV6": "SG161222/Realistic_Vision_V6.0_B1_noVAE",
    "Deliberate": "Yntec/Deliberate",
    "DeliberateV2": "Yntec/Deliberate2",
    "Dreamshaper8": "Lykon/dreamshaper-8",
    "EpicRealism": "emilianJR/epiCRealism"
}


vae_model_path = "stabilityai/sd-vae-ft-mse"
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model")
ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model")

safety_model_id = "CompVis/stable-diffusion-safety-checker"
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)

device = "cuda"

noise_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)

def load_model(base_model_path):
    pipe = StableDiffusionPipeline.from_pretrained(
        base_model_path,
        torch_dtype=torch.float16,
        scheduler=noise_scheduler,
        vae=vae,
        feature_extractor=safety_feature_extractor,
        safety_checker=None  # <--- Disable safety checker
    ).to(device)
    return pipe

ip_model = None
ip_model_plus = None

app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

cv2.setNumThreads(1)

@spaces.GPU(enable_queue=True)
def generate_image(images, prompt, negative_prompt, preserve_face_structure, face_strength, likeness_strength, nfaa_negative_prompt, base_model, num_inference_steps, guidance_scale, width, height, progress=gr.Progress(track_tqdm=True)):
    global ip_model, ip_model_plus
    base_model_path = base_model_paths[base_model]
    pipe = load_model(base_model_path)
    ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
    ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device)

    faceid_all_embeds = []
    first_iteration = True
    for image in images:
        face = cv2.imread(image)
        faces = app.get(face)
        faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
        faceid_all_embeds.append(faceid_embed)
        if(first_iteration and preserve_face_structure):
            face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224) # you can also segment the face
            first_iteration = False
            
    average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
    
    total_negative_prompt = f"{negative_prompt} {nfaa_negative_prompt}"
    
    if(not preserve_face_structure):
        print("Generating normal")
        image = ip_model.generate(
            prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding,
            scale=likeness_strength, width=width, height=height, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale
        )
    else:
        print("Generating plus")
        image = ip_model_plus.generate(
            prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding,
            scale=likeness_strength, face_image=face_image, shortcut=True, s_scale=face_strength, width=width, height=height, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale
        )
    print(image)
    return image

def change_style(style):
    if style == "Photorealistic":
        return(gr.update(value=True), gr.update(value=1.3), gr.update(value=1.0))
    else:
        return(gr.update(value=True), gr.update(value=0.1), gr.update(value=0.8))

def swap_to_gallery(images):
    return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)

def remove_back_to_files():
    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)

css = '''
h1{margin-bottom: 0 !important}
footer{display:none !important}
'''

with gr.Blocks(css=css) as demo:
    gr.Markdown("")
    gr.Markdown("")
    with gr.Row():
        with gr.Column():
            files = gr.Files(
                        label="Drag 1 or more photos of your face",
                        file_types=["image"]
                    )
            uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=125)
            with gr.Column(visible=False) as clear_button:
                remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm")
            prompt = gr.Textbox(label="Prompt",
                       info="Try something like 'a photo of a man/woman/person'",
                       placeholder="A photo of a [man/woman/person]...")
            negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality")
            style = gr.Radio(label="Generation type", info="For stylized try prompts like 'a watercolor painting of a woman'", choices=["Photorealistic", "Stylized"], value="Photorealistic")
            base_model = gr.Dropdown(label="Base Model", choices=list(base_model_paths.keys()), value="Realistic_Vision_V4.0_noVAE")
            submit = gr.Button("Submit")
            with gr.Accordion(open=False, label="Advanced Options"):
                preserve = gr.Checkbox(label="Preserve Face Structure", info="Higher quality, less versatility (the face structure of your first photo will be preserved). Unchecking this will use the v1 model.", value=True)
                face_strength = gr.Slider(label="Face Structure strength", info="Only applied if preserve face structure is checked", value=1.3, step=0.1, minimum=0, maximum=3)
                likeness_strength = gr.Slider(label="Face Embed strength", value=1.0, step=0.1, minimum=0, maximum=5)
                nfaa_negative_prompts = gr.Textbox(label="Appended Negative Prompts", info="Negative prompts to steer generations towards safe for all audiences outputs", value="naked, bikini, skimpy, scanty, bare skin, lingerie, swimsuit, exposed, see-through")
                num_inference_steps = gr.Slider(label="Number of Inference Steps", value=30, step=1, minimum=10, maximum=100)
                guidance_scale = gr.Slider(label="Guidance Scale", value=7.5, step=0.1, minimum=1, maximum=20)
                width = gr.Slider(label="Width", value=512, step=64, minimum=256, maximum=1024)
                height = gr.Slider(label="Height", value=512, step=64, minimum=256, maximum=1024)
        with gr.Column():
            gallery = gr.Gallery(label="Generated Images")
        style.change(fn=change_style,
                    inputs=style,
                    outputs=[preserve, face_strength, likeness_strength])
        files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
        remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
        submit.click(fn=generate_image,
                    inputs=[files,prompt,negative_prompt,preserve, face_strength, likeness_strength, nfaa_negative_prompts, base_model, num_inference_steps, guidance_scale, width, height],
                    outputs=gallery)
    
    gr.Markdown("")
    
demo.launch()