Spaces:
Paused
Paused
File size: 6,175 Bytes
bfd34e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import cv2
import math
import numbers
import numpy as np
import torch
import torch.nn.functional as F
import torchvision
from torch import nn, einsum
from einops import rearrange, repeat
from ... import share
from lib.utils.iimage import IImage
# params
painta_res = [16, 32]
painta_on = True
token_idx = [1,2]
# GaussianSmoothing is taken from https://github.com/yuval-alaluf/Attend-and-Excite/blob/main/utils/gaussian_smoothing.py
class GaussianSmoothing(nn.Module):
"""
Apply gaussian smoothing on a
1d, 2d or 3d tensor. Filtering is performed seperately for each channel
in the input using a depthwise convolution.
Arguments:
channels (int, sequence): Number of channels of the input tensors. Output will
have this number of channels as well.
kernel_size (int, sequence): Size of the gaussian kernel.
sigma (float, sequence): Standard deviation of the gaussian kernel.
dim (int, optional): The number of dimensions of the data.
Default value is 2 (spatial).
"""
def __init__(self, channels, kernel_size, sigma, dim=2):
super(GaussianSmoothing, self).__init__()
if isinstance(kernel_size, numbers.Number):
kernel_size = [kernel_size] * dim
if isinstance(sigma, numbers.Number):
sigma = [sigma] * dim
# The gaussian kernel is the product of the
# gaussian function of each dimension.
kernel = 1
meshgrids = torch.meshgrid(
[
torch.arange(size, dtype=torch.float32)
for size in kernel_size
]
)
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
mean = (size - 1) / 2
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * \
torch.exp(-((mgrid - mean) / (2 * std)) ** 2)
# Make sure sum of values in gaussian kernel equals 1.
kernel = kernel / torch.sum(kernel)
# Reshape to depthwise convolutional weight
kernel = kernel.view(1, 1, *kernel.size())
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
self.register_buffer('weight', kernel)
self.groups = channels
if dim == 1:
self.conv = F.conv1d
elif dim == 2:
self.conv = F.conv2d
elif dim == 3:
self.conv = F.conv3d
else:
raise RuntimeError(
'Only 1, 2 and 3 dimensions are supported. Received {}.'.format(dim)
)
def forward(self, input):
"""
Apply gaussian filter to input.
Arguments:
input (torch.Tensor): Input to apply gaussian filter on.
Returns:
filtered (torch.Tensor): Filtered output.
"""
return self.conv(input, weight=self.weight.to(input.dtype), groups=self.groups, padding='same')
def forward(self, x, context=None, mask=None):
is_cross = context is not None
att_type = "self" if context is None else "cross"
h = self.heads
q = self.to_q(x)
context = x if context is None else context
k = self.to_k(context)
v = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
sim_before = sim
del q, k
if mask is not None:
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
if hasattr(share, '_crossattn_similarity_res8') and x.shape[1] == share.input_shape.res8 and att_type == 'cross':
share._crossattn_similarity_res8.append(torch.stack(share.reshape(sim).chunk(2))) # Chunk into 2 parts to differentiate the unconditional and conditional parts
if hasattr(share, '_crossattn_similarity_res16') and x.shape[1] == share.input_shape.res16 and att_type == 'cross':
share._crossattn_similarity_res16.append(torch.stack(share.reshape(sim).chunk(2))) # Chunk into 2 parts to differentiate the unconditional and conditional parts
if hasattr(share, '_crossattn_similarity_res32') and x.shape[1] == share.input_shape.res32 and att_type == 'cross':
share._crossattn_similarity_res32.append(torch.stack(share.reshape(sim).chunk(2))) # Chunk into 2 parts to differentiate the unconditional and conditional parts
if hasattr(share, '_crossattn_similarity_res64') and x.shape[1] == share.input_shape.res64 and att_type == 'cross':
share._crossattn_similarity_res64.append(torch.stack(share.reshape(sim).chunk(2))) # Chunk into 2 parts to differentiate the unconditional and conditional parts
sim = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', sim, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
if is_cross:
return self.to_out(out)
return self.to_out(out), v, sim_before
def painta_rescale(y, self_v, self_sim, cross_sim, self_h, to_out):
mask = share.painta_mask.get_res(self_v)
shape = share.painta_mask.get_shape(self_v)
res = share.painta_mask.get_res_val(self_v)
mask = (mask > 0.5).to(y.dtype)
m = mask.to(self_v.device)
m = rearrange(m, 'b c h w -> b (h w) c').contiguous()
m = torch.matmul(m, m.permute(0, 2, 1)) + (1-m)
cross_sim = cross_sim[:, token_idx].sum(dim=1)
cross_sim = cross_sim.reshape(shape)
gaussian_smoothing = GaussianSmoothing(channels=1, kernel_size=3, sigma=0.5, dim=2).cuda()
cross_sim = gaussian_smoothing(cross_sim.unsqueeze(0))[0] # optional smoothing
cross_sim = cross_sim.reshape(-1)
cross_sim = ((cross_sim - torch.median(cross_sim.ravel())) / torch.max(cross_sim.ravel())).clip(0, 1)
if painta_on and res in painta_res:
c = (1 - m) * cross_sim.reshape(1, 1, -1) + m
self_sim = self_sim * c
self_sim = self_sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', self_sim, self_v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=self_h)
out = to_out(out)
else:
out = y
return out
|