Deadmon commited on
Commit
89b3db2
·
verified ·
1 Parent(s): ea1c804

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +141 -0
app.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import gradio as gr
4
+ import numpy as np
5
+ from PIL import Image
6
+ from einops import rearrange
7
+ import requests
8
+ import spaces
9
+ from huggingface_hub import login
10
+ from gradio_imageslider import ImageSlider # Import ImageSlider
11
+
12
+ from image_datasets.canny_dataset import canny_processor, c_crop
13
+ from src.flux.sampling import denoise_controlnet, get_noise, get_schedule, prepare, unpack
14
+ from src.flux.util import load_ae, load_clip, load_t5, load_flow_model, load_controlnet, load_safetensors
15
+
16
+ # Download and load the ControlNet model
17
+ model_url = "https://huggingface.co/XLabs-AI/flux-controlnet-canny-v3/resolve/main/flux-canny-controlnet-v3.safetensors?download=true"
18
+ model_path = "./flux-canny-controlnet-v3.safetensors"
19
+ if not os.path.exists(model_path):
20
+ response = requests.get(model_url)
21
+ with open(model_path, 'wb') as f:
22
+ f.write(response.content)
23
+
24
+ # Source: https://github.com/XLabs-AI/x-flux.git
25
+ name = "flux-dev"
26
+ device = torch.device("cuda")
27
+ offload = False
28
+ is_schnell = name == "flux-schnell"
29
+
30
+ model, ae, t5, clip, controlnet = None, None, None, None, None
31
+
32
+ def load_models():
33
+ global model, ae, t5, clip, controlnet
34
+ t5 = load_t5(device, max_length=256 if is_schnell else 512)
35
+ clip = load_clip(device)
36
+ model = load_flow_model(name, device=device)
37
+ ae = load_ae(name, device=device)
38
+ controlnet = load_controlnet(name, device).to(device).to(torch.bfloat16)
39
+
40
+ checkpoint = load_safetensors(model_path)
41
+ controlnet.load_state_dict(checkpoint, strict=False)
42
+
43
+ load_models()
44
+
45
+ def preprocess_image(image, target_width, target_height, crop=True):
46
+ if crop:
47
+ image = c_crop(image) # Crop the image to square
48
+ original_width, original_height = image.size
49
+
50
+ # Resize to match the target size without stretching
51
+ scale = max(target_width / original_width, target_height / original_height)
52
+ resized_width = int(scale * original_width)
53
+ resized_height = int(scale * original_height)
54
+
55
+ image = image.resize((resized_width, resized_height), Image.LANCZOS)
56
+
57
+ # Center crop to match the target dimensions
58
+ left = (resized_width - target_width) // 2
59
+ top = (resized_height - target_height) // 2
60
+ image = image.crop((left, top, left + target_width, top + target_height))
61
+ else:
62
+ image = image.resize((target_width, target_height), Image.LANCZOS)
63
+
64
+ return image
65
+
66
+ def preprocess_canny_image(image, target_width, target_height, crop=True):
67
+ image = preprocess_image(image, target_width, target_height, crop=crop)
68
+ image = canny_processor(image)
69
+ return image
70
+
71
+ @spaces.GPU(duration=120)
72
+ def generate_image(prompt, control_image, control_mode, num_steps=50, guidance=4, width=512, height=512, seed=42, random_seed=False):
73
+ if random_seed:
74
+ seed = np.random.randint(0, 10000)
75
+
76
+ if not os.path.isdir("./controlnet_results/"):
77
+ os.makedirs("./controlnet_results/")
78
+
79
+ torch_device = torch.device("cuda")
80
+
81
+ model.to(torch_device)
82
+ t5.to(torch_device)
83
+ clip.to(torch_device)
84
+ ae.to(torch_device)
85
+ controlnet.to(torch_device)
86
+
87
+ width = 16 * width // 16
88
+ height = 16 * height // 16
89
+ timesteps = get_schedule(num_steps, (width // 8) * (height // 8) // (16 * 16), shift=(not is_schnell))
90
+
91
+ processed_input = preprocess_image(control_image, width, height)
92
+ canny_processed = preprocess_canny_image(control_image, width, height)
93
+ controlnet_cond = torch.from_numpy((np.array(canny_processed) / 127.5) - 1)
94
+ controlnet_cond = controlnet_cond.permute(2, 0, 1).unsqueeze(0).to(torch.bfloat16).to(torch_device)
95
+
96
+ torch.manual_seed(seed)
97
+ with torch.no_grad():
98
+ x = get_noise(1, height, width, device=torch_device, dtype=torch.bfloat16, seed=seed)
99
+ inp_cond = prepare(t5=t5, clip=clip, img=x, prompt=prompt)
100
+
101
+ x = denoise_controlnet(model, **inp_cond, controlnet=controlnet, timesteps=timesteps, guidance=guidance, controlnet_cond=controlnet_cond, control_mode=control_mode)
102
+
103
+ x = unpack(x.float(), height, width)
104
+ x = ae.decode(x)
105
+
106
+ x1 = x.clamp(-1, 1)
107
+ x1 = rearrange(x1[-1], "c h w -> h w c")
108
+ output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy())
109
+
110
+ return [processed_input, output_img] # Return both images for slider
111
+
112
+ control_modes = [
113
+ "canny",
114
+ "tile",
115
+ "depth",
116
+ "blur",
117
+ "pose",
118
+ "gray",
119
+ "lq"
120
+ ]
121
+
122
+ interface = gr.Interface(
123
+ fn=generate_image,
124
+ inputs=[
125
+ gr.Textbox(label="Prompt"),
126
+ gr.Image(type="pil", label="Control Image"),
127
+ gr.Dropdown(choices=control_modes, value="canny", label="Control Mode"),
128
+ gr.Slider(step=1, minimum=1, maximum=64, value=28, label="Num Steps"),
129
+ gr.Slider(minimum=0.1, maximum=10, value=4, label="Guidance"),
130
+ gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Width"),
131
+ gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Height"),
132
+ gr.Number(value=42, label="Seed"),
133
+ gr.Checkbox(label="Random Seed")
134
+ ],
135
+ outputs=ImageSlider(label="Before / After"), # Use ImageSlider as the output
136
+ title="FLUX.1 Controlnet Canny",
137
+ description="Generate images using ControlNet and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]"
138
+ )
139
+
140
+ if __name__ == "__main__":
141
+ interface.launch()