Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,24 +4,47 @@ import gradio as gr
|
|
| 4 |
import numpy as np
|
| 5 |
from PIL import Image
|
| 6 |
from einops import rearrange
|
| 7 |
-
|
| 8 |
-
|
|
|
|
| 9 |
from gradio_imageslider import ImageSlider # Import ImageSlider
|
| 10 |
-
import cv2 # Import OpenCV for Canny edge detection
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
device = torch.device("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
| 21 |
|
| 22 |
def preprocess_image(image, target_width, target_height, crop=True):
|
| 23 |
if crop:
|
| 24 |
-
image =
|
| 25 |
original_width, original_height = image.size
|
| 26 |
|
| 27 |
# Resize to match the target size without stretching
|
|
@@ -42,50 +65,61 @@ def preprocess_image(image, target_width, target_height, crop=True):
|
|
| 42 |
|
| 43 |
def preprocess_canny_image(image, target_width, target_height, crop=True):
|
| 44 |
image = preprocess_image(image, target_width, target_height, crop=crop)
|
| 45 |
-
image =
|
| 46 |
-
image = cv2.Canny(image, 100, 200) # Apply Canny edge detection
|
| 47 |
-
image = Image.fromarray(image)
|
| 48 |
return image
|
| 49 |
|
| 50 |
-
|
|
|
|
| 51 |
if random_seed:
|
| 52 |
seed = np.random.randint(0, 10000)
|
| 53 |
|
| 54 |
if not os.path.isdir("./controlnet_results/"):
|
| 55 |
os.makedirs("./controlnet_results/")
|
| 56 |
|
| 57 |
-
torch.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
#
|
| 64 |
-
image = pipe(
|
| 65 |
-
prompt,
|
| 66 |
-
control_image=control_image,
|
| 67 |
-
control_mode=control_mode,
|
| 68 |
-
width=width,
|
| 69 |
-
height=height,
|
| 70 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 71 |
-
num_inference_steps=num_steps,
|
| 72 |
-
guidance_scale=guidance,
|
| 73 |
-
).images[0]
|
| 74 |
-
|
| 75 |
-
return [control_image, image] # Return both images for slider
|
| 76 |
|
| 77 |
interface = gr.Interface(
|
| 78 |
fn=generate_image,
|
| 79 |
inputs=[
|
| 80 |
gr.Textbox(label="Prompt"),
|
| 81 |
gr.Image(type="pil", label="Control Image"),
|
| 82 |
-
gr.Slider(step=1, minimum=1, maximum=64, value=
|
| 83 |
-
gr.Slider(minimum=0.1, maximum=10, value=
|
| 84 |
gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Width"),
|
| 85 |
gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Height"),
|
| 86 |
gr.Number(value=42, label="Seed"),
|
| 87 |
-
gr.Checkbox(label="Random Seed")
|
| 88 |
-
gr.Radio(choices=[0, 1, 2, 3, 4, 5, 6], value=0, label="Control Mode")
|
| 89 |
],
|
| 90 |
outputs=ImageSlider(label="Before / After"), # Use ImageSlider as the output
|
| 91 |
title="FLUX.1 Controlnet Canny",
|
|
@@ -94,3 +128,4 @@ interface = gr.Interface(
|
|
| 94 |
|
| 95 |
if __name__ == "__main__":
|
| 96 |
interface.launch()
|
|
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
from PIL import Image
|
| 6 |
from einops import rearrange
|
| 7 |
+
import requests
|
| 8 |
+
import spaces
|
| 9 |
+
from huggingface_hub import login
|
| 10 |
from gradio_imageslider import ImageSlider # Import ImageSlider
|
|
|
|
| 11 |
|
| 12 |
+
from image_datasets.canny_dataset import canny_processor, c_crop
|
| 13 |
+
from src.flux.sampling import denoise_controlnet, get_noise, get_schedule, prepare, unpack
|
| 14 |
+
from src.flux.util import load_ae, load_clip, load_t5, load_flow_model, load_controlnet, load_safetensors
|
| 15 |
|
| 16 |
+
# Download and load the ControlNet model
|
| 17 |
+
model_url = "https://huggingface.co/XLabs-AI/flux-controlnet-canny-v3/resolve/main/flux-canny-controlnet-v3.safetensors?download=true"
|
| 18 |
+
model_path = "./flux-canny-controlnet-v3.safetensors"
|
| 19 |
+
if not os.path.exists(model_path):
|
| 20 |
+
response = requests.get(model_url)
|
| 21 |
+
with open(model_path, 'wb') as f:
|
| 22 |
+
f.write(response.content)
|
| 23 |
+
|
| 24 |
+
# Source: https://github.com/XLabs-AI/x-flux.git
|
| 25 |
+
name = "flux-dev"
|
| 26 |
device = torch.device("cuda")
|
| 27 |
+
offload = False
|
| 28 |
+
is_schnell = name == "flux-schnell"
|
| 29 |
+
|
| 30 |
+
model, ae, t5, clip, controlnet = None, None, None, None, None
|
| 31 |
+
|
| 32 |
+
def load_models():
|
| 33 |
+
global model, ae, t5, clip, controlnet
|
| 34 |
+
t5 = load_t5(device, max_length=256 if is_schnell else 512)
|
| 35 |
+
clip = load_clip(device)
|
| 36 |
+
model = load_flow_model(name, device=device)
|
| 37 |
+
ae = load_ae(name, device=device)
|
| 38 |
+
controlnet = load_controlnet(name, device).to(device).to(torch.bfloat16)
|
| 39 |
|
| 40 |
+
checkpoint = load_safetensors(model_path)
|
| 41 |
+
controlnet.load_state_dict(checkpoint, strict=False)
|
| 42 |
+
|
| 43 |
+
load_models()
|
| 44 |
|
| 45 |
def preprocess_image(image, target_width, target_height, crop=True):
|
| 46 |
if crop:
|
| 47 |
+
image = c_crop(image) # Crop the image to square
|
| 48 |
original_width, original_height = image.size
|
| 49 |
|
| 50 |
# Resize to match the target size without stretching
|
|
|
|
| 65 |
|
| 66 |
def preprocess_canny_image(image, target_width, target_height, crop=True):
|
| 67 |
image = preprocess_image(image, target_width, target_height, crop=crop)
|
| 68 |
+
image = canny_processor(image)
|
|
|
|
|
|
|
| 69 |
return image
|
| 70 |
|
| 71 |
+
@spaces.GPU(duration=120)
|
| 72 |
+
def generate_image(prompt, control_image, num_steps=50, guidance=4, width=512, height=512, seed=42, random_seed=False):
|
| 73 |
if random_seed:
|
| 74 |
seed = np.random.randint(0, 10000)
|
| 75 |
|
| 76 |
if not os.path.isdir("./controlnet_results/"):
|
| 77 |
os.makedirs("./controlnet_results/")
|
| 78 |
|
| 79 |
+
torch_device = torch.device("cuda")
|
| 80 |
+
|
| 81 |
+
model.to(torch_device)
|
| 82 |
+
t5.to(torch_device)
|
| 83 |
+
clip.to(torch_device)
|
| 84 |
+
ae.to(torch_device)
|
| 85 |
+
controlnet.to(torch_device)
|
| 86 |
|
| 87 |
+
width = 16 * width // 16
|
| 88 |
+
height = 16 * height // 16
|
| 89 |
+
timesteps = get_schedule(num_steps, (width // 8) * (height // 8) // (16 * 16), shift=(not is_schnell))
|
| 90 |
|
| 91 |
+
processed_input = preprocess_image(control_image, width, height)
|
| 92 |
+
canny_processed = preprocess_canny_image(control_image, width, height)
|
| 93 |
+
controlnet_cond = torch.from_numpy((np.array(canny_processed) / 127.5) - 1)
|
| 94 |
+
controlnet_cond = controlnet_cond.permute(2, 0, 1).unsqueeze(0).to(torch.bfloat16).to(torch_device)
|
| 95 |
+
|
| 96 |
+
torch.manual_seed(seed)
|
| 97 |
+
with torch.no_grad():
|
| 98 |
+
x = get_noise(1, height, width, device=torch_device, dtype=torch.bfloat16, seed=seed)
|
| 99 |
+
inp_cond = prepare(t5=t5, clip=clip, img=x, prompt=prompt)
|
| 100 |
+
|
| 101 |
+
x = denoise_controlnet(model, **inp_cond, controlnet=controlnet, timesteps=timesteps, guidance=guidance, controlnet_cond=controlnet_cond)
|
| 102 |
+
|
| 103 |
+
x = unpack(x.float(), height, width)
|
| 104 |
+
x = ae.decode(x)
|
| 105 |
+
|
| 106 |
+
x1 = x.clamp(-1, 1)
|
| 107 |
+
x1 = rearrange(x1[-1], "c h w -> h w c")
|
| 108 |
+
output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy())
|
| 109 |
|
| 110 |
+
return [processed_input, output_img] # Return both images for slider
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
interface = gr.Interface(
|
| 113 |
fn=generate_image,
|
| 114 |
inputs=[
|
| 115 |
gr.Textbox(label="Prompt"),
|
| 116 |
gr.Image(type="pil", label="Control Image"),
|
| 117 |
+
gr.Slider(step=1, minimum=1, maximum=64, value=28, label="Num Steps"),
|
| 118 |
+
gr.Slider(minimum=0.1, maximum=10, value=4, label="Guidance"),
|
| 119 |
gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Width"),
|
| 120 |
gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Height"),
|
| 121 |
gr.Number(value=42, label="Seed"),
|
| 122 |
+
gr.Checkbox(label="Random Seed")
|
|
|
|
| 123 |
],
|
| 124 |
outputs=ImageSlider(label="Before / After"), # Use ImageSlider as the output
|
| 125 |
title="FLUX.1 Controlnet Canny",
|
|
|
|
| 128 |
|
| 129 |
if __name__ == "__main__":
|
| 130 |
interface.launch()
|
| 131 |
+
|