Spaces:
Runtime error
Runtime error
| import torch | |
| from diffusers.utils import load_image | |
| from diffusers import FluxControlNetPipeline, FluxControlNetModel | |
| # Clear unnecessary memory | |
| torch.cuda.empty_cache() | |
| # Set the environment variable to handle memory fragmentation | |
| import os | |
| os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" | |
| base_model = 'black-forest-labs/FLUX.1-dev' | |
| controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Union' | |
| # Use a smaller precision if possible | |
| controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.float16) | |
| pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.float16) | |
| pipe.to("cuda") | |
| control_image_canny = load_image("https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union-alpha/resolve/main/images/canny.jpg") | |
| controlnet_conditioning_scale = 0.5 | |
| control_mode = 0 | |
| # Ensure that image is loaded correctly | |
| width, height = control_image_canny.size | |
| prompt = 'A bohemian-style female travel blogger with sun-kissed skin and messy beach waves.' | |
| image = pipe( | |
| prompt, | |
| control_image=control_image_canny, | |
| control_mode=control_mode, | |
| width=width, | |
| height=height, | |
| controlnet_conditioning_scale=controlnet_conditioning_scale, | |
| num_inference_steps=24, | |
| guidance_scale=3.5, | |
| ).images[0] | |
| image.save("image.jpg") | |
| # Empty cache after the operation to free up memory | |
| torch.cuda.empty_cache() | |