Spaces:
Runtime error
Runtime error
import torch | |
from diffusers.utils import load_image | |
from diffusers import FluxControlNetPipeline, FluxControlNetModel | |
# Clear unnecessary memory | |
torch.cuda.empty_cache() | |
# Set the environment variable to handle memory fragmentation | |
import os | |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" | |
base_model = 'black-forest-labs/FLUX.1-dev' | |
controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Union' | |
# Use a smaller precision if possible | |
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.float16) | |
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.float16) | |
pipe.to("cuda") | |
control_image_canny = load_image("https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union-alpha/resolve/main/images/canny.jpg") | |
controlnet_conditioning_scale = 0.5 | |
control_mode = 0 | |
# Ensure that image is loaded correctly | |
width, height = control_image_canny.size | |
prompt = 'A bohemian-style female travel blogger with sun-kissed skin and messy beach waves.' | |
image = pipe( | |
prompt, | |
control_image=control_image_canny, | |
control_mode=control_mode, | |
width=width, | |
height=height, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
num_inference_steps=24, | |
guidance_scale=3.5, | |
).images[0] | |
image.save("image.jpg") | |
# Empty cache after the operation to free up memory | |
torch.cuda.empty_cache() | |