Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from transformers import pipeline
|
3 |
+
from langdetect import detect
|
4 |
+
|
5 |
+
app = Flask(__name__)
|
6 |
+
|
7 |
+
# load models
|
8 |
+
hebrew_model = pipeline("text-generation", model="onlplab/alephbertgpt")
|
9 |
+
english_model = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct")
|
10 |
+
|
11 |
+
@app.route("/generate", methods=["POST"])
|
12 |
+
def generate():
|
13 |
+
data = request.json
|
14 |
+
text = data.get("text", "")
|
15 |
+
|
16 |
+
# detect language
|
17 |
+
language = detect(text)
|
18 |
+
|
19 |
+
if language == 'he':
|
20 |
+
model = hebrew_model
|
21 |
+
elif language == 'en':
|
22 |
+
model = english_model
|
23 |
+
else:
|
24 |
+
print("Decision Making Helper BOT currently supports Hebrew and English Languages")
|
25 |
+
|
26 |
+
# create an answer from the model
|
27 |
+
response = model(text, max_length=100, do_sample=True)
|
28 |
+
return jsonify({"response": response[0]['generated_text']})
|
29 |
+
|
30 |
+
if __name__ == "__main__":
|
31 |
+
app.run(host="0.0.0.0", port=7860)
|