DeMaking commited on
Commit
73e412f
verified
1 Parent(s): b867592

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -19
app.py CHANGED
@@ -1,21 +1,20 @@
1
  import os
2
  import logging
3
  from fastapi import FastAPI, Request
4
- from huggingface_hub import InferenceClient, login
 
5
  import langid
6
 
 
 
7
 
8
  # Configure logging
9
- logging.basicConfig(
10
- format="%(asctime)s - %(levelname)s - %(message)s",
11
- level=logging.INFO
12
- )
13
  logger = logging.getLogger(__name__)
14
 
15
 
16
  # Get Hugging Face API token from environment variable
17
  HF_HUB_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
18
-
19
  if not HF_HUB_TOKEN:
20
  raise ValueError("Missing Hugging Face API token. Please set HUGGINGFACEHUB_API_TOKEN.")
21
 
@@ -29,7 +28,7 @@ client = InferenceClient(api_key=HF_HUB_TOKEN)
29
  app = FastAPI()
30
 
31
 
32
- def detect_language(user_input: str) -> str:
33
  """
34
  Detect the language of the input text.
35
  Returns "hebrew" if Hebrew, "english" if English, or "unsupported" otherwise.
@@ -47,7 +46,7 @@ def detect_language(user_input: str) -> str:
47
  return "unsupported"
48
 
49
 
50
- def generate_response(text: str) -> str:
51
  """
52
  Generate a response based on the input text.
53
  Selects a prompt and model according to the detected language,
@@ -57,7 +56,7 @@ def generate_response(text: str) -> str:
57
  if language == "hebrew":
58
  # Hebrew prompt: answer shortly but explain your decision-making process
59
  content = "转砖诪讜专 注诇 转砖讜讘讛 拽爪专讛, 讗讘诇 转住驻专 讗讬讱 拽讬讘诇转 讗转 讛讛讞诇讟讛, " + text
60
- model = "mistralai/Mistral-Nemo-Instruct-2407" # You can change this model as needed.
61
  elif language == "english":
62
  content = "keep it short but tell your decision making process, " + text
63
  model = "mistralai/Mistral-Nemo-Instruct-2407"
@@ -83,8 +82,8 @@ def generate_response(text: str) -> str:
83
  @app.post("/generate_response")
84
  async def generate_text(request: Request):
85
  """
86
- API endpoint that accepts a JSON payload with a "text" field,
87
- and returns the generated response from the chat model.
88
  """
89
  try:
90
  data = await request.json()
@@ -101,22 +100,23 @@ async def generate_text(request: Request):
101
  @app.get("/")
102
  async def root():
103
  """
104
- Root endpoint for checking if the API is running.
105
  """
106
  return {"message": "Decision Helper API is running!"}
107
 
108
 
109
- # Function to run the Telegram bot
110
- # def run_bot():
111
- # logger.info("Starting Telegram bot...")
112
- # # Use subprocess to run bot.py in parallel
113
- # import subprocess
114
- # subprocess.Popen(["python3", "bot.py"])
115
 
116
 
117
  if __name__ == "__main__":
118
  # When running app.py directly, start the bot as well.
119
- # run_bot()
120
  # Uncomment the next lines to run the FastAPI server standalone.
 
121
  import uvicorn
122
  uvicorn.run(app, host="0.0.0.0", port=7860)
 
1
  import os
2
  import logging
3
  from fastapi import FastAPI, Request
4
+ import subprocess
5
+ from huggingface_hub import InferenceClient, login, configure_http_backend
6
  import langid
7
 
8
+ # Configure the HTTP backend to use "requests"
9
+ configure_http_backend("requests") # Set the HTTP backend to "requests"
10
 
11
  # Configure logging
12
+ logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO)
 
 
 
13
  logger = logging.getLogger(__name__)
14
 
15
 
16
  # Get Hugging Face API token from environment variable
17
  HF_HUB_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
 
18
  if not HF_HUB_TOKEN:
19
  raise ValueError("Missing Hugging Face API token. Please set HUGGINGFACEHUB_API_TOKEN.")
20
 
 
28
  app = FastAPI()
29
 
30
 
31
+ def detect_language(user_input):
32
  """
33
  Detect the language of the input text.
34
  Returns "hebrew" if Hebrew, "english" if English, or "unsupported" otherwise.
 
46
  return "unsupported"
47
 
48
 
49
+ def generate_response(text):
50
  """
51
  Generate a response based on the input text.
52
  Selects a prompt and model according to the detected language,
 
56
  if language == "hebrew":
57
  # Hebrew prompt: answer shortly but explain your decision-making process
58
  content = "转砖诪讜专 注诇 转砖讜讘讛 拽爪专讛, 讗讘诇 转住驻专 讗讬讱 拽讬讘诇转 讗转 讛讛讞诇讟讛, " + text
59
+ model = "mistralai/Mistral-Nemo-Instruct-2407"
60
  elif language == "english":
61
  content = "keep it short but tell your decision making process, " + text
62
  model = "mistralai/Mistral-Nemo-Instruct-2407"
 
82
  @app.post("/generate_response")
83
  async def generate_text(request: Request):
84
  """
85
+ API endpoint to generate a response from the chat model.
86
+ Expects a JSON with a "text" field.
87
  """
88
  try:
89
  data = await request.json()
 
100
  @app.get("/")
101
  async def root():
102
  """
103
+ Root endpoint to check that the API is running.
104
  """
105
  return {"message": "Decision Helper API is running!"}
106
 
107
 
108
+ def run_bot():
109
+ """
110
+ Start the Telegram bot by running bot.py as a subprocess.
111
+ """
112
+ logger.info("Starting Telegram bot...")
113
+ subprocess.Popen(["python3", "bot.py"])
114
 
115
 
116
  if __name__ == "__main__":
117
  # When running app.py directly, start the bot as well.
118
+ run_bot()
119
  # Uncomment the next lines to run the FastAPI server standalone.
120
+ # Start the FastAPI server with uvicorn
121
  import uvicorn
122
  uvicorn.run(app, host="0.0.0.0", port=7860)