Update app.py
Browse files
app.py
CHANGED
@@ -1,68 +1,126 @@
|
|
1 |
-
import subprocess
|
2 |
import os
|
3 |
import logging
|
4 |
import time
|
5 |
from fastapi import FastAPI, Request
|
6 |
-
from transformers import pipeline
|
7 |
from huggingface_hub import InferenceClient, login
|
8 |
import langid
|
9 |
-
import asyncio
|
10 |
|
11 |
-
# Environment variables
|
12 |
-
HF_HUB_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
if not HF_HUB_TOKEN:
|
15 |
raise ValueError("Missing Hugging Face API token. Please set HUGGINGFACEHUB_API_TOKEN.")
|
16 |
|
|
|
|
|
17 |
login(token=HF_HUB_TOKEN)
|
18 |
client = InferenceClient(api_key=HF_HUB_TOKEN)
|
19 |
|
|
|
|
|
20 |
app = FastAPI()
|
21 |
|
22 |
|
23 |
-
# Function to detect language
|
24 |
-
def detect_language(user_input):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
try:
|
26 |
lang, _ = langid.classify(user_input)
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
28 |
except Exception as e:
|
29 |
-
|
30 |
return "unsupported"
|
31 |
|
32 |
|
33 |
-
# Function to generate response
|
34 |
-
def generate_response(text):
|
35 |
-
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
if language == "hebrew":
|
38 |
-
|
39 |
model = "microsoft/Phi-3.5-mini-instruct"
|
40 |
elif language == "english":
|
41 |
-
|
42 |
model = "mistralai/Mistral-Nemo-Instruct-2407"
|
43 |
else:
|
44 |
return "Sorry, I only support Hebrew and English."
|
45 |
-
|
46 |
-
messages = [{"role": "user", "content": content}]
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
|
58 |
@app.post("/generate_response")
|
59 |
async def generate_text(request: Request):
|
|
|
|
|
|
|
|
|
60 |
try:
|
61 |
data = await request.json()
|
62 |
text = data.get("text", "").strip()
|
63 |
if not text:
|
64 |
return {"error": "No text provided"}
|
65 |
-
|
66 |
response = generate_response(text)
|
67 |
return {"response": response}
|
68 |
except Exception as e:
|
@@ -72,6 +130,9 @@ async def generate_text(request: Request):
|
|
72 |
|
73 |
@app.get("/")
|
74 |
async def root():
|
|
|
|
|
|
|
75 |
return {"message": "Decision Helper API is running!"}
|
76 |
|
77 |
|
|
|
|
|
1 |
import os
|
2 |
import logging
|
3 |
import time
|
4 |
from fastapi import FastAPI, Request
|
5 |
+
# from transformers import pipeline
|
6 |
from huggingface_hub import InferenceClient, login
|
7 |
import langid
|
8 |
+
# import asyncio
|
9 |
|
|
|
|
|
10 |
|
11 |
+
# Configure logging
|
12 |
+
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO)
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
|
16 |
+
# Get Hugging Face API token from environment variable
|
17 |
+
HF_HUB_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
18 |
if not HF_HUB_TOKEN:
|
19 |
raise ValueError("Missing Hugging Face API token. Please set HUGGINGFACEHUB_API_TOKEN.")
|
20 |
|
21 |
+
|
22 |
+
# Login and initialize the client
|
23 |
login(token=HF_HUB_TOKEN)
|
24 |
client = InferenceClient(api_key=HF_HUB_TOKEN)
|
25 |
|
26 |
+
|
27 |
+
# Create FastAPI app
|
28 |
app = FastAPI()
|
29 |
|
30 |
|
31 |
+
# # Function to detect language
|
32 |
+
# def detect_language(user_input):
|
33 |
+
# try:
|
34 |
+
# lang, _ = langid.classify(user_input)
|
35 |
+
# return "hebrew" if lang == "he" else "english" if lang == "en" else "unsupported"
|
36 |
+
# except Exception as e:
|
37 |
+
# logging.error(f"Language detection error: {e}")
|
38 |
+
# return "unsupported"
|
39 |
+
|
40 |
+
def detect_language(user_input: str) -> str:
|
41 |
+
"""
|
42 |
+
Detects the language of the input text.
|
43 |
+
Returns "hebrew" for Hebrew, "english" for English, and "unsupported" otherwise.
|
44 |
+
"""
|
45 |
try:
|
46 |
lang, _ = langid.classify(user_input)
|
47 |
+
if lang == "he":
|
48 |
+
return "hebrew"
|
49 |
+
elif lang == "en":
|
50 |
+
return "english"
|
51 |
+
else:
|
52 |
+
return "unsupported"
|
53 |
except Exception as e:
|
54 |
+
logger.error(f"Language detection error: {e}")
|
55 |
return "unsupported"
|
56 |
|
57 |
|
58 |
+
# # Function to generate response
|
59 |
+
# def generate_response(text):
|
60 |
+
# language = detect_language(text)
|
61 |
|
62 |
+
# if language == "hebrew":
|
63 |
+
# content = "转注谞讛 讘拽爪专讛 讗讘诇 转砖转祝 讗转 转讛诇讬讱 拽讘诇转 讛讛讞诇讟讜转 砖诇讱, " + text
|
64 |
+
# model = "microsoft/Phi-3.5-mini-instruct"
|
65 |
+
# elif language == "english":
|
66 |
+
# content = "keep it short but tell your decision making process, " + text
|
67 |
+
# model = "mistralai/Mistral-Nemo-Instruct-2407"
|
68 |
+
# else:
|
69 |
+
# return "Sorry, I only support Hebrew and English."
|
70 |
+
|
71 |
+
# messages = [{"role": "user", "content": content}]
|
72 |
+
|
73 |
+
# completion = client.chat.completions.create(
|
74 |
+
# model=model,
|
75 |
+
# messages=messages,
|
76 |
+
# max_tokens=2048,
|
77 |
+
# temperature=0.5,
|
78 |
+
# top_p=0.7
|
79 |
+
# )
|
80 |
+
# return completion.choices[0].message.content
|
81 |
+
|
82 |
+
|
83 |
+
def generate_response(text: str) -> str:
|
84 |
+
"""
|
85 |
+
Generates a response by selecting a prompt and model based on the language.
|
86 |
+
Uses the Hugging Face Inference API to get a chat completion.
|
87 |
+
"""
|
88 |
+
language = detect_language(text)
|
89 |
if language == "hebrew":
|
90 |
+
prompt = "转注谞讛 讘拽爪专讛 讗讘诇 转砖转祝 讗转 转讛诇讬讱 拽讘诇转 讛讛讞诇讟讜转 砖诇讱, " + text
|
91 |
model = "microsoft/Phi-3.5-mini-instruct"
|
92 |
elif language == "english":
|
93 |
+
prompt = "keep it short but tell your decision making process, " + text
|
94 |
model = "mistralai/Mistral-Nemo-Instruct-2407"
|
95 |
else:
|
96 |
return "Sorry, I only support Hebrew and English."
|
|
|
|
|
97 |
|
98 |
+
messages = [{"role": "user", "content": prompt}]
|
99 |
+
try:
|
100 |
+
completion = client.chat.completions.create(
|
101 |
+
model=model,
|
102 |
+
messages=messages,
|
103 |
+
max_tokens=2048,
|
104 |
+
temperature=0.5,
|
105 |
+
top_p=0.7
|
106 |
+
)
|
107 |
+
return completion.choices[0].message.content
|
108 |
+
except Exception as e:
|
109 |
+
logger.error(f"Error generating response: {e}")
|
110 |
+
return "Error: Could not generate response."
|
111 |
|
112 |
|
113 |
@app.post("/generate_response")
|
114 |
async def generate_text(request: Request):
|
115 |
+
"""
|
116 |
+
Endpoint to generate a response from the chat model.
|
117 |
+
Expects a JSON with a "text" field.
|
118 |
+
"""
|
119 |
try:
|
120 |
data = await request.json()
|
121 |
text = data.get("text", "").strip()
|
122 |
if not text:
|
123 |
return {"error": "No text provided"}
|
|
|
124 |
response = generate_response(text)
|
125 |
return {"response": response}
|
126 |
except Exception as e:
|
|
|
130 |
|
131 |
@app.get("/")
|
132 |
async def root():
|
133 |
+
"""
|
134 |
+
Root endpoint to check that the API is running.
|
135 |
+
"""
|
136 |
return {"message": "Decision Helper API is running!"}
|
137 |
|
138 |
|