decision-helper-bot / latest_app.py
DeMaking's picture
Rename app.py to latest_app.py
338214b verified
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
import httpx
from telegram import Update
from telegram.ext import ApplicationBuilder, CommandHandler, ContextTypes
import os
import logging
# from transformers import pipeline
from huggingface_hub import InferenceClient, login
import langid
# Configure logging
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO)
logger = logging.getLogger(__name__)
# Replace this with your Hugging Face Space URL
HUGGING_FACE_SPACE_URL = "https://demaking-decision-helper-bot.hf.space"
# Get Telegram bot token from environment variables
TOKEN = os.getenv("TELEGRAM_BOT_TOKEN")
if not TOKEN:
raise ValueError("Missing Telegram Bot Token. Please set TELEGRAM_BOT_TOKEN environment variable.")
# Get Hugging Face API token from environment variable
HF_HUB_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
if not HF_HUB_TOKEN:
raise ValueError("Missing Hugging Face API token. Please set HUGGINGFACEHUB_API_TOKEN.")
# Login and initialize the client
login(token=HF_HUB_TOKEN)
client = InferenceClient(api_key=HF_HUB_TOKEN)
app = FastAPI()
# Function to detect language
def detect_language(user_input):
try:
lang, _ = langid.classify(user_input)
return "hebrew" if lang == "he" else "english" if lang == "en" else "unsupported"
except Exception as e:
logging.error(f"Language detection error: {e}")
return "unsupported"
# Function to generate response
def generate_response(text):
language = detect_language(text)
if language == "hebrew":
content = "转注谞讛 讘拽爪专讛 讗讘诇 转砖转祝 讗转 转讛诇讬讱 拽讘诇转 讛讛讞诇讟讜转 砖诇讱, " + text
model = "microsoft/Phi-3.5-mini-instruct"
elif language == "english":
content = "keep it short but tell your decision making process, " + text
model = "mistralai/Mistral-Nemo-Instruct-2407"
else:
return "Sorry, I only support Hebrew and English."
messages = [{"role": "user", "content": content}]
completion = client.chat.completions.create(
model=model,
messages=messages,
max_tokens=2048,
temperature=0.5,
top_p=0.7
)
return completion.choices[0].message.content
@app.post("/generate_response")
async def generate_text(request: Request):
"""
Endpoint to generate a response from the chat model.
Expects a JSON with a "text" field.
"""
try:
data = await request.json()
text = data.get("text", "").strip()
if not text:
return {"error": "No text provided"}
response = generate_response(text)
return {"response": response}
except Exception as e:
logging.error(f"Error processing request: {e}")
return {"error": "An unexpected error occurred."}
@app.get("/")
async def root():
"""
Root endpoint to check that the API is running.
"""
return {"message": "Decision Helper API is running!"}
# -------------------------
# Function to fetch response from FastAPI
# -------------------------
async def call_hugging_face_space(input_data: str):
"""
Sends a POST request to the FastAPI API with the user's imput and returns the JSON response.
"""
async with httpx.AsyncClient(timeout=45.0) as client:
try:
response = await client.post(HUGGING_FACE_SPACE_URL, json={"input": input_data})
response.raise_for_status() # Raise exception for HTTP 4XX/5XX errors
return response.json()
except httpx.HTTPStatusError as e:
logger.error(f"HTTP Error: {e.response.status_code} - {e.response.text}")
return {"response": "Error: API returned an error."}
except httpx.RequestError as e:
logger.error(f"Request Error: {e}")
return {"response": "Error: Request Error. Could not reach API."}
except httpx.ConnectError as e:
logger.error(f"Connection error: {e}")
return {"error": "Could not connect to the Hugging Face Space"}
except Exception as e:
logger.error(f"Unexpected Error: {e}")
return {"response": "Error: Unexpected error occurred."}
@app.post("/webhook/{token}")
async def webhook(token: str, request: Request):
if token != TOKEN:
logger.error(f"Tokens doesn't match. {e}")
return JSONResponse(status_code=403, content={"message": "Forbidden"})
update = Update.de_json(await request.json(), None)
message_text = update.message.text
result = await call_hugging_face_space(message_text)
return JSONResponse(content=result)
def start_telegram_bot():
application = ApplicationBuilder().token(TOKEN).build()
# Set up a command handler
async def start(update: Update, context: ContextTypes.DEFAULT_TYPE):
await update.message.reply_text("Hello! Tell me your decision-making issue, and I'll try to help.")
logger.info("Start command received.")
async def handle_message(update: Update, context: ContextTypes.DEFAULT_TYPE):
user_text = update.message.text
logger.info(f"User message: {user_text}")
# Send the user text to the FastAPI server and get the response.
result = await call_hugging_face_space(user_text)
response_text = result.get("response", "Error generating response.")
logger.info(f"API Response: {response_text}")
await update.message.reply_text(response_text)
application.add_handler(CommandHandler("start", start))
application.add_handler(MessageHandler(filters.TEXT & ~filters.COMMAND, handle_message))
# Start the bot
application.run_polling()
if __name__ == "__main__":
import threading
# Start the Telegram bot in a separate thread
threading.Thread(target=start_telegram_bot).start()
# Start the FastAPI app
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)