import cv2 import os import tempfile import uuid from PIL import Image import numpy as np from typing import Dict, List, Tuple, Any, Optional import time from collections import defaultdict from image_processor import ImageProcessor from evaluation_metrics import EvaluationMetrics from scene_analyzer import SceneAnalyzer from detection_model import DetectionModel class VideoProcessor: """ Handles the processing of video files, including object detection and scene analysis on selected frames. """ def __init__(self, image_processor: ImageProcessor): """ Initializes the VideoProcessor. Args: image_processor (ImageProcessor): An initialized ImageProcessor instance. """ self.image_processor = image_processor def process_video_file(self, video_path: str, model_name: str, confidence_threshold: float, process_interval: int = 5, scene_desc_interval_sec: int = 3) -> Tuple[Optional[str], str, Dict]: """ Processes an uploaded video file, performs detection and periodic scene analysis, and returns the path to the annotated output video file along with a summary. Args: video_path (str): Path to the input video file. model_name (str): Name of the YOLO model to use. confidence_threshold (float): Confidence threshold for object detection. process_interval (int): Process every Nth frame. Defaults to 5. scene_desc_interval_sec (int): Update scene description every N seconds. Defaults to 3. Returns: Tuple[Optional[str], str, Dict]: (Path to output video or None, Summary text, Statistics dictionary) """ if not video_path or not os.path.exists(video_path): print(f"Error: Video file not found at {video_path}") return None, "Error: Video file not found.", {} print(f"Starting video processing for: {video_path}") start_time = time.time() cap = cv2.VideoCapture(video_path) if not cap.isOpened(): print(f"Error: Could not open video file {video_path}") return None, "Error opening video file.", {} # Get video properties fps = cap.get(cv2.CAP_PROP_FPS) if fps <= 0: # Handle case where fps is not available or invalid fps = 30 # Assume a default fps print(f"Warning: Could not get valid FPS for video. Assuming {fps} FPS.") width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) total_frames_video = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) print(f"Video properties: {width}x{height} @ {fps:.2f} FPS, Total Frames: {total_frames_video}") # Calculate description update interval in frames description_update_interval_frames = int(fps * scene_desc_interval_sec) if description_update_interval_frames < 1: description_update_interval_frames = int(fps) # Update at least once per second if interval is too short object_trackers = {} # 儲存ID與物體的映射 last_detected_objects = {} # 儲存上一次檢測到的物體資訊 next_object_id = 0 # 下一個可用的物體ID tracking_threshold = 0.6 # 相同物體的IoU object_colors = {} # 每個被追蹤的物體分配固定顏色 # Setup Output Video output_filename = f"processed_{uuid.uuid4().hex}_{os.path.basename(video_path)}" temp_dir = tempfile.gettempdir() # Use system's temp directory output_path = os.path.join(temp_dir, output_filename) # Ensure the output path has a compatible extension (like .mp4) if not output_path.lower().endswith(('.mp4', '.avi', '.mov')): output_path += ".mp4" # Use 'mp4v' for MP4, common and well-supported fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) if not out.isOpened(): print(f"Error: Could not open VideoWriter for path: {output_path}") cap.release() return None, f"Error creating output video file at {output_path}.", {} print(f"Output video will be saved to: {output_path}") frame_count = 0 processed_frame_count = 0 all_stats = [] # Store stats for each processed frame summary_lines = [] last_description = "Analyzing scene..." # Initial description frame_since_last_desc = description_update_interval_frames # Trigger analysis on first processed frame try: while True: ret, frame = cap.read() if not ret: break # End of video frame_count += 1 frame_since_last_desc += 1 current_frame_annotated = False # Flag if this frame was processed and annotated # Process frame based on interval if frame_count % process_interval == 0: processed_frame_count += 1 print(f"Processing frame {frame_count}...") current_frame_annotated = True # Use ImageProcessor for single-frame tasks # 1. Convert frame format BGR -> RGB -> PIL try: frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) pil_image = Image.fromarray(frame_rgb) except Exception as e: print(f"Error converting frame {frame_count}: {e}") continue # Skip this frame # 2. Get appropriate model instance # Confidence is passed from UI, model_name too model_instance = self.image_processor.get_model_instance(model_name, confidence_threshold) if not model_instance or not model_instance.is_model_loaded: print(f"Error: Model {model_name} not loaded. Skipping frame {frame_count}.") # Draw basic frame without annotation cv2.putText(frame, f"Scene: {last_description[:80]}...", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 3, cv2.LINE_AA) cv2.putText(frame, f"Scene: {last_description[:80]}...", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA) out.write(frame) continue # 3. Perform detection detection_result = model_instance.detect(pil_image) # Use PIL image current_description_for_frame = last_description # Default to last known description scene_analysis_result = None stats = {} if detection_result and hasattr(detection_result, 'boxes') and len(detection_result.boxes) > 0: # Ensure SceneAnalyzer is ready within ImageProcessor if not hasattr(self.image_processor, 'scene_analyzer') or self.image_processor.scene_analyzer is None: print("Initializing SceneAnalyzer...") # Pass class names from the current detection result self.image_processor.scene_analyzer = SceneAnalyzer(class_names=detection_result.names) elif self.image_processor.scene_analyzer.class_names is None: # Update class names if they were missing self.image_processor.scene_analyzer.class_names = detection_result.names if hasattr(self.image_processor.scene_analyzer, 'spatial_analyzer'): self.image_processor.scene_analyzer.spatial_analyzer.class_names = detection_result.names # 4. Perform Scene Analysis (periodically) if frame_since_last_desc >= description_update_interval_frames: print(f"Analyzing scene at frame {frame_count} (threshold: {description_update_interval_frames} frames)...") # Pass lighting_info=None for now, as it's disabled for performance scene_analysis_result = self.image_processor.analyze_scene(detection_result, lighting_info=None) current_description_for_frame = scene_analysis_result.get("description", last_description) last_description = current_description_for_frame # Cache the new description frame_since_last_desc = 0 # Reset counter # 5. Calculate Statistics for this frame stats = EvaluationMetrics.calculate_basic_stats(detection_result) stats['frame_number'] = frame_count # Add frame number to stats all_stats.append(stats) # 6. Draw annotations names = detection_result.names boxes = detection_result.boxes.xyxy.cpu().numpy() classes = detection_result.boxes.cls.cpu().numpy().astype(int) confs = detection_result.boxes.conf.cpu().numpy() def calculate_iou(box1, box2): """Calculate Intersection IOU value""" x1_1, y1_1, x2_1, y2_1 = box1 x1_2, y1_2, x2_2, y2_2 = box2 xi1 = max(x1_1, x1_2) yi1 = max(y1_1, y1_2) xi2 = min(x2_1, x2_2) yi2 = min(y2_1, y2_2) inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1) box1_area = (x2_1 - x1_1) * (y2_1 - y1_1) box2_area = (x2_2 - x1_2) * (y2_2 - y1_2) union_area = box1_area + box2_area - inter_area return inter_area / union_area if union_area > 0 else 0 # 處理當前幀中的所有檢測 current_detected_objects = {} for box, cls_id, conf in zip(boxes, classes, confs): x1, y1, x2, y2 = map(int, box) # 查找最匹配的已追蹤物體 best_match_id = None best_match_iou = 0 for obj_id, (old_box, old_cls_id, _) in last_detected_objects.items(): if old_cls_id == cls_id: # 同一類別才比較 iou = calculate_iou(box, old_box) if iou > tracking_threshold and iou > best_match_iou: best_match_id = obj_id best_match_iou = iou # 如果找到匹配,使用現有ID;否則分配新ID if best_match_id is not None: obj_id = best_match_id else: obj_id = next_object_id next_object_id += 1 # 使用更明顯的顏色 bright_colors = [ (0, 0, 255), # red (0, 255, 0), # green (255, 0, 0), # blue (0, 255, 255), # yellow (255, 0, 255), # purple (255, 128, 0), # orange (128, 0, 255) # purple ] object_colors[obj_id] = bright_colors[obj_id % len(bright_colors)] # update tracking info current_detected_objects[obj_id] = (box, cls_id, conf) color = object_colors.get(obj_id, (0, 255, 0)) # default is green label = f"{names.get(cls_id, 'Unknown')}-{obj_id}: {conf:.2f}" # 平滑化邊界框:如果是已知物體,與上一幀位置平均 if obj_id in last_detected_objects: old_box, _, _ = last_detected_objects[obj_id] old_x1, old_y1, old_x2, old_y2 = map(int, old_box) # 平滑係數 alpha = 0.7 # current weight beta = 0.3 # history weight x1 = int(alpha * x1 + beta * old_x1) y1 = int(alpha * y1 + beta * old_y1) x2 = int(alpha * x2 + beta * old_x2) y2 = int(alpha * y2 + beta * old_y2) # draw box and label cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2) # add text (w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2) cv2.rectangle(frame, (x1, y1 - h - 10), (x1 + w, y1 - 10), color, -1) cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, cv2.LINE_AA) # update tracking info last_detected_objects = current_detected_objects.copy() # Draw the current scene description on the frame cv2.putText(frame, f"Scene: {current_description_for_frame[:80]}...", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 3, cv2.LINE_AA) # Black outline cv2.putText(frame, f"Scene: {current_description_for_frame[:80]}...", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA) # White text # Write the frame (annotated or original) to the output video # Draw last known description if this frame wasn't processed if not current_frame_annotated: cv2.putText(frame, f"Scene: {last_description[:80]}...", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 3, cv2.LINE_AA) cv2.putText(frame, f"Scene: {last_description[:80]}...", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA) out.write(frame) # Write frame to output file except Exception as e: print(f"Error during video processing loop for {video_path}: {e}") import traceback traceback.print_exc() summary_lines.append(f"An error occurred during processing: {e}") finally: # Release resources cap.release() out.release() print(f"Video processing finished. Resources released. Output path: {output_path}") if not os.path.exists(output_path) or os.path.getsize(output_path) == 0: print(f"Error: Output video file was not created or is empty at {output_path}") summary_lines.append("Error: Failed to create output video.") output_path = None end_time = time.time() processing_time = end_time - start_time summary_lines.insert(0, f"Finished processing in {processing_time:.2f} seconds.") summary_lines.insert(1, f"Processed {processed_frame_count} frames out of {frame_count} (interval: {process_interval} frames).") summary_lines.insert(2, f"Scene description updated approximately every {scene_desc_interval_sec} seconds.") # Generate Aggregate Statistics aggregated_stats = { "total_frames_read": frame_count, "total_frames_processed": processed_frame_count, "avg_objects_per_processed_frame": 0, # Calculate below "cumulative_detections": {}, # Total times each class was detected "max_concurrent_detections": {} # Max count of each class in a single processed frame } object_cumulative_counts = {} object_max_concurrent_counts = {} # Store the max count found for each object type total_detected_in_processed = 0 # Iterate through stats collected from each processed frame for frame_stats in all_stats: total_objects_in_frame = frame_stats.get("total_objects", 0) total_detected_in_processed += total_objects_in_frame # Iterate through object classes detected in this frame for obj_name, obj_data in frame_stats.get("class_statistics", {}).items(): count_in_frame = obj_data.get("count", 0) # Cumulative count if obj_name not in object_cumulative_counts: object_cumulative_counts[obj_name] = 0 object_cumulative_counts[obj_name] += count_in_frame # Max concurrent count if obj_name not in object_max_concurrent_counts: object_max_concurrent_counts[obj_name] = 0 # Update the max count if the current frame's count is higher object_max_concurrent_counts[obj_name] = max(object_max_concurrent_counts[obj_name], count_in_frame) # Add sorted results to the final dictionary aggregated_stats["cumulative_detections"] = dict(sorted(object_cumulative_counts.items(), key=lambda item: item[1], reverse=True)) aggregated_stats["max_concurrent_detections"] = dict(sorted(object_max_concurrent_counts.items(), key=lambda item: item[1], reverse=True)) # Calculate average objects per processed frame if processed_frame_count > 0: aggregated_stats["avg_objects_per_processed_frame"] = round(total_detected_in_processed / processed_frame_count, 2) summary_text = "\n".join(summary_lines) print("Generated Summary:\n", summary_text) print("Aggregated Stats (Revised):\n", aggregated_stats) # Print the revised stats # Return the potentially updated output_path return output_path, summary_text, aggregated_stats