Spaces:
Running
on
Zero
Running
on
Zero
Delete app.py
Browse files
app.py
DELETED
@@ -1,474 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
import cv2
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
import gradio as gr
|
7 |
-
import io
|
8 |
-
from PIL import Image, ImageDraw, ImageFont
|
9 |
-
import spaces
|
10 |
-
from typing import Dict, List, Any, Optional, Tuple
|
11 |
-
from ultralytics import YOLO
|
12 |
-
|
13 |
-
from detection_model import DetectionModel
|
14 |
-
from color_mapper import ColorMapper
|
15 |
-
from visualization_helper import VisualizationHelper
|
16 |
-
from evaluation_metrics import EvaluationMetrics
|
17 |
-
from style import Style
|
18 |
-
|
19 |
-
|
20 |
-
color_mapper = ColorMapper()
|
21 |
-
model_instances = {}
|
22 |
-
|
23 |
-
@spaces.GPU
|
24 |
-
def process_image(image, model_instance, confidence_threshold, filter_classes=None):
|
25 |
-
"""
|
26 |
-
Process an image for object detection
|
27 |
-
|
28 |
-
Args:
|
29 |
-
image: Input image (numpy array or PIL Image)
|
30 |
-
model_instance: DetectionModel instance to use
|
31 |
-
confidence_threshold: Confidence threshold for detection
|
32 |
-
filter_classes: Optional list of classes to filter results
|
33 |
-
|
34 |
-
Returns:
|
35 |
-
Tuple of (result_image, result_text, stats_data)
|
36 |
-
"""
|
37 |
-
# initialize key variables
|
38 |
-
result = None
|
39 |
-
stats = {}
|
40 |
-
temp_path = None
|
41 |
-
|
42 |
-
try:
|
43 |
-
# update confidence threshold
|
44 |
-
model_instance.confidence = confidence_threshold
|
45 |
-
|
46 |
-
# processing input image
|
47 |
-
if isinstance(image, np.ndarray):
|
48 |
-
# Convert BGR to RGB if needed
|
49 |
-
if image.shape[2] == 3:
|
50 |
-
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
51 |
-
else:
|
52 |
-
image_rgb = image
|
53 |
-
pil_image = Image.fromarray(image_rgb)
|
54 |
-
elif image is None:
|
55 |
-
return None, "No image provided. Please upload an image.", {}
|
56 |
-
else:
|
57 |
-
pil_image = image
|
58 |
-
|
59 |
-
# store temp files
|
60 |
-
import uuid
|
61 |
-
import tempfile
|
62 |
-
|
63 |
-
temp_dir = tempfile.gettempdir() # use system temp directory
|
64 |
-
temp_filename = f"temp_{uuid.uuid4().hex}.jpg"
|
65 |
-
temp_path = os.path.join(temp_dir, temp_filename)
|
66 |
-
pil_image.save(temp_path)
|
67 |
-
|
68 |
-
# object detection
|
69 |
-
result = model_instance.detect(temp_path)
|
70 |
-
|
71 |
-
if result is None:
|
72 |
-
return None, "Detection failed. Please try again with a different image.", {}
|
73 |
-
|
74 |
-
# calculate stats
|
75 |
-
stats = EvaluationMetrics.calculate_basic_stats(result)
|
76 |
-
|
77 |
-
# add space calculation
|
78 |
-
spatial_metrics = EvaluationMetrics.calculate_distance_metrics(result)
|
79 |
-
stats["spatial_metrics"] = spatial_metrics
|
80 |
-
|
81 |
-
if filter_classes and len(filter_classes) > 0:
|
82 |
-
# get classes, boxes, confidence
|
83 |
-
classes = result.boxes.cls.cpu().numpy().astype(int)
|
84 |
-
confs = result.boxes.conf.cpu().numpy()
|
85 |
-
boxes = result.boxes.xyxy.cpu().numpy()
|
86 |
-
|
87 |
-
mask = np.zeros_like(classes, dtype=bool)
|
88 |
-
for cls_id in filter_classes:
|
89 |
-
mask = np.logical_or(mask, classes == cls_id)
|
90 |
-
|
91 |
-
filtered_stats = {
|
92 |
-
"total_objects": int(np.sum(mask)),
|
93 |
-
"class_statistics": {},
|
94 |
-
"average_confidence": float(np.mean(confs[mask])) if np.any(mask) else 0,
|
95 |
-
"spatial_metrics": stats["spatial_metrics"]
|
96 |
-
}
|
97 |
-
|
98 |
-
# update stats
|
99 |
-
names = result.names
|
100 |
-
for cls, conf in zip(classes[mask], confs[mask]):
|
101 |
-
cls_name = names[int(cls)]
|
102 |
-
if cls_name not in filtered_stats["class_statistics"]:
|
103 |
-
filtered_stats["class_statistics"][cls_name] = {
|
104 |
-
"count": 0,
|
105 |
-
"average_confidence": 0
|
106 |
-
}
|
107 |
-
|
108 |
-
filtered_stats["class_statistics"][cls_name]["count"] += 1
|
109 |
-
filtered_stats["class_statistics"][cls_name]["average_confidence"] = conf
|
110 |
-
|
111 |
-
stats = filtered_stats
|
112 |
-
|
113 |
-
viz_data = EvaluationMetrics.generate_visualization_data(
|
114 |
-
result,
|
115 |
-
color_mapper.get_all_colors()
|
116 |
-
)
|
117 |
-
|
118 |
-
result_image = VisualizationHelper.visualize_detection(
|
119 |
-
temp_path, result, color_mapper=color_mapper, figsize=(12, 12), return_pil=True
|
120 |
-
)
|
121 |
-
|
122 |
-
result_text = EvaluationMetrics.format_detection_summary(viz_data)
|
123 |
-
|
124 |
-
return result_image, result_text, stats
|
125 |
-
|
126 |
-
except Exception as e:
|
127 |
-
error_message = f"Error Occurs: {str(e)}"
|
128 |
-
import traceback
|
129 |
-
traceback.print_exc()
|
130 |
-
print(error_message)
|
131 |
-
return None, error_message, {}
|
132 |
-
|
133 |
-
finally:
|
134 |
-
if temp_path and os.path.exists(temp_path):
|
135 |
-
try:
|
136 |
-
os.remove(temp_path)
|
137 |
-
except Exception as e:
|
138 |
-
print(f"Cannot delete temp files {temp_path}: {str(e)}")
|
139 |
-
|
140 |
-
def format_result_text(stats):
|
141 |
-
"""Format detection statistics into readable text"""
|
142 |
-
if not stats or "total_objects" not in stats:
|
143 |
-
return "No objects detected."
|
144 |
-
|
145 |
-
lines = [
|
146 |
-
f"Detected {stats['total_objects']} objects.",
|
147 |
-
f"Average confidence: {stats.get('average_confidence', 0):.2f}",
|
148 |
-
"",
|
149 |
-
"Objects by class:",
|
150 |
-
]
|
151 |
-
|
152 |
-
if "class_statistics" in stats and stats["class_statistics"]:
|
153 |
-
# Sort classes by count
|
154 |
-
sorted_classes = sorted(
|
155 |
-
stats["class_statistics"].items(),
|
156 |
-
key=lambda x: x[1]["count"],
|
157 |
-
reverse=True
|
158 |
-
)
|
159 |
-
|
160 |
-
for cls_name, cls_stats in sorted_classes:
|
161 |
-
lines.append(f"• {cls_name}: {cls_stats['count']} (avg conf: {cls_stats.get('average_confidence', 0):.2f})")
|
162 |
-
else:
|
163 |
-
lines.append("No class information available.")
|
164 |
-
|
165 |
-
return "\n".join(lines)
|
166 |
-
|
167 |
-
def get_all_classes():
|
168 |
-
"""Get all available COCO classes"""
|
169 |
-
try:
|
170 |
-
class_names = model.class_names
|
171 |
-
return [(idx, name) for idx, name in class_names.items()]
|
172 |
-
except:
|
173 |
-
# Fallback to standard COCO classes
|
174 |
-
return [
|
175 |
-
(0, 'person'), (1, 'bicycle'), (2, 'car'), (3, 'motorcycle'), (4, 'airplane'),
|
176 |
-
(5, 'bus'), (6, 'train'), (7, 'truck'), (8, 'boat'), (9, 'traffic light'),
|
177 |
-
(10, 'fire hydrant'), (11, 'stop sign'), (12, 'parking meter'), (13, 'bench'),
|
178 |
-
(14, 'bird'), (15, 'cat'), (16, 'dog'), (17, 'horse'), (18, 'sheep'), (19, 'cow'),
|
179 |
-
(20, 'elephant'), (21, 'bear'), (22, 'zebra'), (23, 'giraffe'), (24, 'backpack'),
|
180 |
-
(25, 'umbrella'), (26, 'handbag'), (27, 'tie'), (28, 'suitcase'), (29, 'frisbee'),
|
181 |
-
(30, 'skis'), (31, 'snowboard'), (32, 'sports ball'), (33, 'kite'), (34, 'baseball bat'),
|
182 |
-
(35, 'baseball glove'), (36, 'skateboard'), (37, 'surfboard'), (38, 'tennis racket'),
|
183 |
-
(39, 'bottle'), (40, 'wine glass'), (41, 'cup'), (42, 'fork'), (43, 'knife'),
|
184 |
-
(44, 'spoon'), (45, 'bowl'), (46, 'banana'), (47, 'apple'), (48, 'sandwich'),
|
185 |
-
(49, 'orange'), (50, 'broccoli'), (51, 'carrot'), (52, 'hot dog'), (53, 'pizza'),
|
186 |
-
(54, 'donut'), (55, 'cake'), (56, 'chair'), (57, 'couch'), (58, 'potted plant'),
|
187 |
-
(59, 'bed'), (60, 'dining table'), (61, 'toilet'), (62, 'tv'), (63, 'laptop'),
|
188 |
-
(64, 'mouse'), (65, 'remote'), (66, 'keyboard'), (67, 'cell phone'), (68, 'microwave'),
|
189 |
-
(69, 'oven'), (70, 'toaster'), (71, 'sink'), (72, 'refrigerator'), (73, 'book'),
|
190 |
-
(74, 'clock'), (75, 'vase'), (76, 'scissors'), (77, 'teddy bear'), (78, 'hair drier'),
|
191 |
-
(79, 'toothbrush')
|
192 |
-
]
|
193 |
-
|
194 |
-
def create_interface():
|
195 |
-
"""創建 Gradio 界面"""
|
196 |
-
|
197 |
-
css = Style.get_css()
|
198 |
-
|
199 |
-
# get model info
|
200 |
-
available_models = DetectionModel.get_available_models()
|
201 |
-
model_choices = [model["model_file"] for model in available_models]
|
202 |
-
model_labels = [f"{model['name']} - {model['inference_speed']}" for model in available_models]
|
203 |
-
|
204 |
-
# classes option
|
205 |
-
available_classes = get_all_classes()
|
206 |
-
class_choices = [f"{id}: {name}" for id, name in available_classes]
|
207 |
-
|
208 |
-
# create blocks area
|
209 |
-
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="teal", secondary_hue="blue")) as demo:
|
210 |
-
# Header
|
211 |
-
with gr.Group(elem_classes="app-header"):
|
212 |
-
gr.HTML("""
|
213 |
-
<div style="text-align: center; width: 100%;">
|
214 |
-
<h1 class="app-title">VisionScout</h1>
|
215 |
-
<h2 class="app-subtitle">Detect and identify objects in your images</h2>
|
216 |
-
<div class="app-divider"></div>
|
217 |
-
</div>
|
218 |
-
""")
|
219 |
-
|
220 |
-
current_model = gr.State("yolov8m.pt") # use medium size as default
|
221 |
-
|
222 |
-
# 主要內容區 - 輸入和輸出面板
|
223 |
-
with gr.Row(equal_height=True):
|
224 |
-
# 左側 - 輸入控制區
|
225 |
-
with gr.Column(scale=4, elem_classes="input-panel"):
|
226 |
-
with gr.Group():
|
227 |
-
gr.Markdown("<div style='text-align: center;'>### Upload Image</div>")
|
228 |
-
image_input = gr.Image(type="pil", label="Upload an image", elem_classes="upload-box")
|
229 |
-
|
230 |
-
with gr.Accordion("Advanced Settings", open=False):
|
231 |
-
with gr.Row():
|
232 |
-
model_dropdown = gr.Dropdown(
|
233 |
-
choices=model_choices,
|
234 |
-
value="yolov8m.pt",
|
235 |
-
label="Select Model",
|
236 |
-
info="Choose different models based on your needs for speed vs. accuracy"
|
237 |
-
)
|
238 |
-
|
239 |
-
# 顯示模型資訊
|
240 |
-
model_info = gr.Markdown(DetectionModel.get_model_description("yolov8m.pt"))
|
241 |
-
|
242 |
-
confidence = gr.Slider(
|
243 |
-
minimum=0.1,
|
244 |
-
maximum=0.9,
|
245 |
-
value=0.25,
|
246 |
-
step=0.05,
|
247 |
-
label="Confidence Threshold",
|
248 |
-
info="Higher values show fewer but more confident detections"
|
249 |
-
)
|
250 |
-
|
251 |
-
with gr.Accordion("Filter Classes", open=False):
|
252 |
-
# 常見物件類別快速選擇按鈕
|
253 |
-
gr.Markdown("<div style='text-align: center;'>Common Categories</div>")
|
254 |
-
with gr.Row():
|
255 |
-
people_btn = gr.Button("People", size="sm")
|
256 |
-
vehicles_btn = gr.Button("Vehicles", size="sm")
|
257 |
-
animals_btn = gr.Button("Animals", size="sm")
|
258 |
-
objects_btn = gr.Button("Common Objects", size="sm")
|
259 |
-
|
260 |
-
# 類別選擇下拉框
|
261 |
-
class_filter = gr.Dropdown(
|
262 |
-
choices=class_choices,
|
263 |
-
multiselect=True,
|
264 |
-
label="Select Classes to Display",
|
265 |
-
info="Leave empty to show all detected objects"
|
266 |
-
)
|
267 |
-
|
268 |
-
# 偵測按鈕
|
269 |
-
detect_btn = gr.Button("Detect Objects", variant="primary", elem_classes="detect-btn")
|
270 |
-
|
271 |
-
# 使用說明區
|
272 |
-
with gr.Group(elem_classes="how-to-use"):
|
273 |
-
gr.Markdown("<div style='text-align: center;'>### How to Use</div>")
|
274 |
-
gr.Markdown("""
|
275 |
-
1. Upload an image or use the camera
|
276 |
-
2. Adjust confidence threshold if needed
|
277 |
-
3. Optionally filter to specific object classes
|
278 |
-
4. Click "Detect Objects" button
|
279 |
-
|
280 |
-
The model will identify objects in your image and display them with bounding boxes.
|
281 |
-
|
282 |
-
**Note:** Detection quality depends on image clarity and object visibility. The model can detect up to 80 different types of common objects.
|
283 |
-
""")
|
284 |
-
|
285 |
-
# 右側 - 結果顯示區
|
286 |
-
with gr.Column(scale=6, elem_classes="output-panel"):
|
287 |
-
with gr.Tabs(elem_classes="tabs"):
|
288 |
-
with gr.Tab("Detection Result"):
|
289 |
-
result_image = gr.Image(type="pil", label="Detection Result")
|
290 |
-
result_text = gr.Textbox(label="Detection Details", lines=10)
|
291 |
-
|
292 |
-
with gr.Tab("Statistics"):
|
293 |
-
with gr.Row():
|
294 |
-
with gr.Column(scale=1):
|
295 |
-
stats_json = gr.JSON(label="Full Statistics")
|
296 |
-
|
297 |
-
with gr.Column(scale=1):
|
298 |
-
gr.Markdown("<div style='text-align: center;'>### Object Distribution</div>")
|
299 |
-
plot_output = gr.Plot(label="Object Distribution")
|
300 |
-
|
301 |
-
detect_btn.click(
|
302 |
-
fn=lambda img, model, conf, classes: process_and_plot(img, model, conf, classes),
|
303 |
-
inputs=[image_input, current_model, confidence, class_filter],
|
304 |
-
outputs=[result_image, result_text, stats_json, plot_output]
|
305 |
-
)
|
306 |
-
|
307 |
-
model_dropdown.change(
|
308 |
-
fn=lambda model: (model, DetectionModel.get_model_description(model)),
|
309 |
-
inputs=[model_dropdown],
|
310 |
-
outputs=[current_model, model_info]
|
311 |
-
)
|
312 |
-
|
313 |
-
# 快速類別過濾按鈕
|
314 |
-
people_classes = [0] # people
|
315 |
-
vehicles_classes = [1, 2, 3, 4, 5, 6, 7, 8] # cars
|
316 |
-
animals_classes = list(range(14, 24)) # COCO dataset animal
|
317 |
-
common_objects = [41, 42, 43, 44, 45, 67, 73, 74, 76] # common things
|
318 |
-
|
319 |
-
people_btn.click(
|
320 |
-
lambda: [f"{id}: {name}" for id, name in available_classes if id in people_classes],
|
321 |
-
outputs=class_filter
|
322 |
-
)
|
323 |
-
|
324 |
-
vehicles_btn.click(
|
325 |
-
lambda: [f"{id}: {name}" for id, name in available_classes if id in vehicles_classes],
|
326 |
-
outputs=class_filter
|
327 |
-
)
|
328 |
-
|
329 |
-
animals_btn.click(
|
330 |
-
lambda: [f"{id}: {name}" for id, name in available_classes if id in animals_classes],
|
331 |
-
outputs=class_filter
|
332 |
-
)
|
333 |
-
|
334 |
-
objects_btn.click(
|
335 |
-
lambda: [f"{id}: {name}" for id, name in available_classes if id in common_objects],
|
336 |
-
outputs=class_filter
|
337 |
-
)
|
338 |
-
|
339 |
-
example_images = [
|
340 |
-
"room_01.jpg",
|
341 |
-
"street_01.jpg",
|
342 |
-
"street_02.jpg",
|
343 |
-
"street_03.jpg"
|
344 |
-
]
|
345 |
-
|
346 |
-
# add expample images
|
347 |
-
gr.Examples(
|
348 |
-
examples=example_images,
|
349 |
-
inputs=image_input,
|
350 |
-
outputs=None,
|
351 |
-
fn=None,
|
352 |
-
cache_examples=False,
|
353 |
-
)
|
354 |
-
|
355 |
-
# footer
|
356 |
-
gr.HTML("""
|
357 |
-
<div class="footer">
|
358 |
-
<p>Powered by YOLOv8 and Ultralytics • Created with Gradio</p>
|
359 |
-
<p>Model can detect 80 different classes of objects</p>
|
360 |
-
</div>
|
361 |
-
""")
|
362 |
-
|
363 |
-
return demo
|
364 |
-
|
365 |
-
@spaces.GPU
|
366 |
-
def process_and_plot(image, model_name, confidence_threshold, filter_classes=None):
|
367 |
-
"""
|
368 |
-
Process image and create plots for statistics
|
369 |
-
|
370 |
-
Args:
|
371 |
-
image: Input image
|
372 |
-
model_name: Name of the model to use
|
373 |
-
confidence_threshold: Confidence threshold for detection
|
374 |
-
filter_classes: Optional list of classes to filter results
|
375 |
-
|
376 |
-
Returns:
|
377 |
-
Tuple of (result_image, result_text, stats_json, plot_figure)
|
378 |
-
"""
|
379 |
-
global model_instances
|
380 |
-
|
381 |
-
if model_name not in model_instances:
|
382 |
-
print(f"Creating new model instance for {model_name}")
|
383 |
-
model_instances[model_name] = DetectionModel(model_name=model_name, confidence=confidence_threshold, iou=0.45)
|
384 |
-
else:
|
385 |
-
print(f"Using existing model instance for {model_name}")
|
386 |
-
model_instances[model_name].confidence = confidence_threshold
|
387 |
-
|
388 |
-
class_ids = None
|
389 |
-
if filter_classes:
|
390 |
-
class_ids = []
|
391 |
-
for class_str in filter_classes:
|
392 |
-
try:
|
393 |
-
# Extract ID from format "id: name"
|
394 |
-
class_id = int(class_str.split(":")[0].strip())
|
395 |
-
class_ids.append(class_id)
|
396 |
-
except:
|
397 |
-
continue
|
398 |
-
|
399 |
-
# execute detection
|
400 |
-
result_image, result_text, stats = process_image(
|
401 |
-
image,
|
402 |
-
model_instances[model_name],
|
403 |
-
confidence_threshold,
|
404 |
-
class_ids
|
405 |
-
)
|
406 |
-
|
407 |
-
# create stats table
|
408 |
-
plot_figure = create_stats_plot(stats)
|
409 |
-
|
410 |
-
return result_image, result_text, stats, plot_figure
|
411 |
-
|
412 |
-
def create_stats_plot(stats):
|
413 |
-
"""
|
414 |
-
Create a visualization of statistics data
|
415 |
-
|
416 |
-
Args:
|
417 |
-
stats: Dictionary containing detection statistics
|
418 |
-
|
419 |
-
Returns:
|
420 |
-
Matplotlib figure with visualization
|
421 |
-
"""
|
422 |
-
if not stats or "class_statistics" not in stats or not stats["class_statistics"]:
|
423 |
-
# Create empty plot if no data
|
424 |
-
fig, ax = plt.subplots(figsize=(8, 6))
|
425 |
-
ax.text(0.5, 0.5, "No detection data available",
|
426 |
-
ha='center', va='center', fontsize=12)
|
427 |
-
ax.set_xlim(0, 1)
|
428 |
-
ax.set_ylim(0, 1)
|
429 |
-
ax.axis('off')
|
430 |
-
return fig
|
431 |
-
|
432 |
-
# preparing visualization data
|
433 |
-
viz_data = {
|
434 |
-
"total_objects": stats.get("total_objects", 0),
|
435 |
-
"average_confidence": stats.get("average_confidence", 0),
|
436 |
-
"class_data": []
|
437 |
-
}
|
438 |
-
|
439 |
-
# get current model classes
|
440 |
-
# This uses the get_all_classes function which should retrieve from the current model
|
441 |
-
available_classes = dict(get_all_classes())
|
442 |
-
|
443 |
-
# process class data
|
444 |
-
for cls_name, cls_stats in stats.get("class_statistics", {}).items():
|
445 |
-
# search for class ID
|
446 |
-
class_id = -1
|
447 |
-
|
448 |
-
# Try to find the class ID from class names
|
449 |
-
for id, name in available_classes.items():
|
450 |
-
if name == cls_name:
|
451 |
-
class_id = id
|
452 |
-
break
|
453 |
-
|
454 |
-
cls_data = {
|
455 |
-
"name": cls_name,
|
456 |
-
"class_id": class_id,
|
457 |
-
"count": cls_stats.get("count", 0),
|
458 |
-
"average_confidence": cls_stats.get("average_confidence", 0),
|
459 |
-
"color": color_mapper.get_color(class_id if class_id >= 0 else cls_name)
|
460 |
-
}
|
461 |
-
|
462 |
-
viz_data["class_data"].append(cls_data)
|
463 |
-
|
464 |
-
# Sort by count in descending order
|
465 |
-
viz_data["class_data"].sort(key=lambda x: x["count"], reverse=True)
|
466 |
-
|
467 |
-
return EvaluationMetrics.create_stats_plot(viz_data)
|
468 |
-
|
469 |
-
|
470 |
-
if __name__ == "__main__":
|
471 |
-
import time
|
472 |
-
|
473 |
-
demo = create_interface()
|
474 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|