Spaces:
Running
on
Zero
Running
on
Zero
Delete evaluation_metrics.py
Browse files- evaluation_metrics.py +0 -323
evaluation_metrics.py
DELETED
@@ -1,323 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import matplotlib.pyplot as plt
|
3 |
-
from typing import Dict, List, Any, Optional, Tuple
|
4 |
-
|
5 |
-
class EvaluationMetrics:
|
6 |
-
"""Class for computing detection metrics, generating statistics and visualization data"""
|
7 |
-
|
8 |
-
@staticmethod
|
9 |
-
def calculate_basic_stats(result: Any) -> Dict:
|
10 |
-
"""
|
11 |
-
Calculate basic statistics for a single detection result
|
12 |
-
|
13 |
-
Args:
|
14 |
-
result: Detection result object
|
15 |
-
|
16 |
-
Returns:
|
17 |
-
Dictionary with basic statistics
|
18 |
-
"""
|
19 |
-
if result is None:
|
20 |
-
return {"error": "No detection result provided"}
|
21 |
-
|
22 |
-
# Get classes and confidences
|
23 |
-
classes = result.boxes.cls.cpu().numpy().astype(int)
|
24 |
-
confidences = result.boxes.conf.cpu().numpy()
|
25 |
-
names = result.names
|
26 |
-
|
27 |
-
# Count by class
|
28 |
-
class_counts = {}
|
29 |
-
for cls, conf in zip(classes, confidences):
|
30 |
-
cls_name = names[int(cls)]
|
31 |
-
if cls_name not in class_counts:
|
32 |
-
class_counts[cls_name] = {"count": 0, "total_confidence": 0, "confidences": []}
|
33 |
-
|
34 |
-
class_counts[cls_name]["count"] += 1
|
35 |
-
class_counts[cls_name]["total_confidence"] += float(conf)
|
36 |
-
class_counts[cls_name]["confidences"].append(float(conf))
|
37 |
-
|
38 |
-
# Calculate average confidence
|
39 |
-
for cls_name, stats in class_counts.items():
|
40 |
-
if stats["count"] > 0:
|
41 |
-
stats["average_confidence"] = stats["total_confidence"] / stats["count"]
|
42 |
-
stats["confidence_std"] = float(np.std(stats["confidences"])) if len(stats["confidences"]) > 1 else 0
|
43 |
-
stats.pop("total_confidence") # Remove intermediate calculation
|
44 |
-
|
45 |
-
# Prepare summary
|
46 |
-
stats = {
|
47 |
-
"total_objects": len(classes),
|
48 |
-
"class_statistics": class_counts,
|
49 |
-
"average_confidence": float(np.mean(confidences)) if len(confidences) > 0 else 0
|
50 |
-
}
|
51 |
-
|
52 |
-
return stats
|
53 |
-
|
54 |
-
@staticmethod
|
55 |
-
def generate_visualization_data(result: Any, class_colors: Dict = None) -> Dict:
|
56 |
-
"""
|
57 |
-
Generate structured data suitable for visualization
|
58 |
-
|
59 |
-
Args:
|
60 |
-
result: Detection result object
|
61 |
-
class_colors: Dictionary mapping class names to color codes (optional)
|
62 |
-
|
63 |
-
Returns:
|
64 |
-
Dictionary with visualization-ready data
|
65 |
-
"""
|
66 |
-
if result is None:
|
67 |
-
return {"error": "No detection result provided"}
|
68 |
-
|
69 |
-
# Get basic stats first
|
70 |
-
stats = EvaluationMetrics.calculate_basic_stats(result)
|
71 |
-
|
72 |
-
# Create visualization-specific data structure
|
73 |
-
viz_data = {
|
74 |
-
"total_objects": stats["total_objects"],
|
75 |
-
"average_confidence": stats["average_confidence"],
|
76 |
-
"class_data": []
|
77 |
-
}
|
78 |
-
|
79 |
-
# Sort classes by count (descending)
|
80 |
-
sorted_classes = sorted(
|
81 |
-
stats["class_statistics"].items(),
|
82 |
-
key=lambda x: x[1]["count"],
|
83 |
-
reverse=True
|
84 |
-
)
|
85 |
-
|
86 |
-
# Create class-specific visualization data
|
87 |
-
for cls_name, cls_stats in sorted_classes:
|
88 |
-
class_id = -1
|
89 |
-
# Find the class ID based on the name
|
90 |
-
for idx, name in result.names.items():
|
91 |
-
if name == cls_name:
|
92 |
-
class_id = idx
|
93 |
-
break
|
94 |
-
|
95 |
-
cls_data = {
|
96 |
-
"name": cls_name,
|
97 |
-
"class_id": class_id,
|
98 |
-
"count": cls_stats["count"],
|
99 |
-
"average_confidence": cls_stats.get("average_confidence", 0),
|
100 |
-
"confidence_std": cls_stats.get("confidence_std", 0),
|
101 |
-
"color": class_colors.get(cls_name, "#CCCCCC") if class_colors else "#CCCCCC"
|
102 |
-
}
|
103 |
-
|
104 |
-
viz_data["class_data"].append(cls_data)
|
105 |
-
|
106 |
-
return viz_data
|
107 |
-
|
108 |
-
@staticmethod
|
109 |
-
def create_stats_plot(viz_data: Dict, figsize: Tuple[int, int] = (10, 7),
|
110 |
-
max_classes: int = 30) -> plt.Figure:
|
111 |
-
"""
|
112 |
-
Create a horizontal bar chart showing detection statistics
|
113 |
-
|
114 |
-
Args:
|
115 |
-
viz_data: Visualization data generated by generate_visualization_data
|
116 |
-
figsize: Figure size (width, height) in inches
|
117 |
-
max_classes: Maximum number of classes to display
|
118 |
-
|
119 |
-
Returns:
|
120 |
-
Matplotlib figure object
|
121 |
-
"""
|
122 |
-
if "error" in viz_data:
|
123 |
-
# Create empty plot if error
|
124 |
-
fig, ax = plt.subplots(figsize=figsize)
|
125 |
-
ax.text(0.5, 0.5, viz_data["error"],
|
126 |
-
ha='center', va='center', fontsize=12)
|
127 |
-
ax.set_xlim(0, 1)
|
128 |
-
ax.set_ylim(0, 1)
|
129 |
-
ax.axis('off')
|
130 |
-
return fig
|
131 |
-
|
132 |
-
if "class_data" not in viz_data or not viz_data["class_data"]:
|
133 |
-
# Create empty plot if no data
|
134 |
-
fig, ax = plt.subplots(figsize=figsize)
|
135 |
-
ax.text(0.5, 0.5, "No detection data available",
|
136 |
-
ha='center', va='center', fontsize=12)
|
137 |
-
ax.set_xlim(0, 1)
|
138 |
-
ax.set_ylim(0, 1)
|
139 |
-
ax.axis('off')
|
140 |
-
return fig
|
141 |
-
|
142 |
-
# Limit to max_classes
|
143 |
-
class_data = viz_data["class_data"][:max_classes]
|
144 |
-
|
145 |
-
# Extract data for plotting
|
146 |
-
class_names = [item["name"] for item in class_data]
|
147 |
-
counts = [item["count"] for item in class_data]
|
148 |
-
colors = [item["color"] for item in class_data]
|
149 |
-
|
150 |
-
# Create figure and horizontal bar chart
|
151 |
-
fig, ax = plt.subplots(figsize=figsize)
|
152 |
-
y_pos = np.arange(len(class_names))
|
153 |
-
|
154 |
-
# Create horizontal bars with class-specific colors
|
155 |
-
bars = ax.barh(y_pos, counts, color=colors, alpha=0.8)
|
156 |
-
|
157 |
-
# Add count values at end of each bar
|
158 |
-
for i, bar in enumerate(bars):
|
159 |
-
width = bar.get_width()
|
160 |
-
conf = class_data[i]["average_confidence"]
|
161 |
-
ax.text(width + 0.3, bar.get_y() + bar.get_height()/2,
|
162 |
-
f"{width:.0f} (conf: {conf:.2f})",
|
163 |
-
va='center', fontsize=9)
|
164 |
-
|
165 |
-
# Customize axis and labels
|
166 |
-
ax.set_yticks(y_pos)
|
167 |
-
ax.set_yticklabels(class_names)
|
168 |
-
ax.invert_yaxis() # Labels read top-to-bottom
|
169 |
-
ax.set_xlabel('Count')
|
170 |
-
ax.set_title(f'Objects Detected: {viz_data["total_objects"]} Total')
|
171 |
-
|
172 |
-
# Add grid for better readability
|
173 |
-
ax.set_axisbelow(True)
|
174 |
-
ax.grid(axis='x', linestyle='--', alpha=0.7)
|
175 |
-
|
176 |
-
# Add detection summary as a text box
|
177 |
-
summary_text = (
|
178 |
-
f"Total Objects: {viz_data['total_objects']}\n"
|
179 |
-
f"Average Confidence: {viz_data['average_confidence']:.2f}\n"
|
180 |
-
f"Unique Classes: {len(viz_data['class_data'])}"
|
181 |
-
)
|
182 |
-
plt.figtext(0.02, 0.02, summary_text, fontsize=9,
|
183 |
-
bbox=dict(facecolor='white', alpha=0.8, boxstyle='round'))
|
184 |
-
|
185 |
-
plt.tight_layout()
|
186 |
-
return fig
|
187 |
-
|
188 |
-
@staticmethod
|
189 |
-
def format_detection_summary(viz_data: Dict) -> str:
|
190 |
-
"""
|
191 |
-
Format detection results as a readable text summary
|
192 |
-
"""
|
193 |
-
if "error" in viz_data:
|
194 |
-
return viz_data["error"]
|
195 |
-
|
196 |
-
if "total_objects" not in viz_data:
|
197 |
-
return "No detection data available."
|
198 |
-
|
199 |
-
# 移除時間顯示
|
200 |
-
total_objects = viz_data["total_objects"]
|
201 |
-
avg_confidence = viz_data["average_confidence"]
|
202 |
-
|
203 |
-
# 創建標題
|
204 |
-
lines = [
|
205 |
-
f"Detected {total_objects} objects.",
|
206 |
-
f"Average confidence: {avg_confidence:.2f}",
|
207 |
-
"",
|
208 |
-
"Objects by class:",
|
209 |
-
]
|
210 |
-
|
211 |
-
# 添加類別詳情
|
212 |
-
if "class_data" in viz_data and viz_data["class_data"]:
|
213 |
-
for item in viz_data["class_data"]:
|
214 |
-
lines.append(
|
215 |
-
f"• {item['name']}: {item['count']} (avg conf: {item['average_confidence']:.2f})"
|
216 |
-
)
|
217 |
-
else:
|
218 |
-
lines.append("No class information available.")
|
219 |
-
|
220 |
-
return "\n".join(lines)
|
221 |
-
|
222 |
-
@staticmethod
|
223 |
-
def calculate_distance_metrics(result: Any) -> Dict:
|
224 |
-
"""
|
225 |
-
Calculate distance-related metrics for detected objects
|
226 |
-
|
227 |
-
Args:
|
228 |
-
result: Detection result object
|
229 |
-
|
230 |
-
Returns:
|
231 |
-
Dictionary with distance metrics
|
232 |
-
"""
|
233 |
-
if result is None:
|
234 |
-
return {"error": "No detection result provided"}
|
235 |
-
|
236 |
-
boxes = result.boxes.xyxy.cpu().numpy()
|
237 |
-
classes = result.boxes.cls.cpu().numpy().astype(int)
|
238 |
-
names = result.names
|
239 |
-
|
240 |
-
# Initialize metrics
|
241 |
-
metrics = {
|
242 |
-
"proximity": {}, # Classes that appear close to each other
|
243 |
-
"spatial_distribution": {}, # Distribution across the image
|
244 |
-
"size_distribution": {} # Size distribution of objects
|
245 |
-
}
|
246 |
-
|
247 |
-
# Calculate image dimensions (assuming normalized coordinates or extract from result)
|
248 |
-
img_width, img_height = 1, 1
|
249 |
-
if hasattr(result, "orig_shape"):
|
250 |
-
img_height, img_width = result.orig_shape[:2]
|
251 |
-
|
252 |
-
# Calculate bounding box areas and centers
|
253 |
-
areas = []
|
254 |
-
centers = []
|
255 |
-
class_names = []
|
256 |
-
|
257 |
-
for box, cls in zip(boxes, classes):
|
258 |
-
x1, y1, x2, y2 = box
|
259 |
-
width, height = x2 - x1, y2 - y1
|
260 |
-
area = width * height
|
261 |
-
center_x, center_y = (x1 + x2) / 2, (y1 + y2) / 2
|
262 |
-
|
263 |
-
areas.append(area)
|
264 |
-
centers.append((center_x, center_y))
|
265 |
-
class_names.append(names[int(cls)])
|
266 |
-
|
267 |
-
# Calculate spatial distribution
|
268 |
-
if centers:
|
269 |
-
x_coords = [c[0] for c in centers]
|
270 |
-
y_coords = [c[1] for c in centers]
|
271 |
-
|
272 |
-
metrics["spatial_distribution"] = {
|
273 |
-
"x_mean": float(np.mean(x_coords)) / img_width,
|
274 |
-
"y_mean": float(np.mean(y_coords)) / img_height,
|
275 |
-
"x_std": float(np.std(x_coords)) / img_width,
|
276 |
-
"y_std": float(np.std(y_coords)) / img_height
|
277 |
-
}
|
278 |
-
|
279 |
-
# Calculate size distribution
|
280 |
-
if areas:
|
281 |
-
metrics["size_distribution"] = {
|
282 |
-
"mean_area": float(np.mean(areas)) / (img_width * img_height),
|
283 |
-
"std_area": float(np.std(areas)) / (img_width * img_height),
|
284 |
-
"min_area": float(np.min(areas)) / (img_width * img_height),
|
285 |
-
"max_area": float(np.max(areas)) / (img_width * img_height)
|
286 |
-
}
|
287 |
-
|
288 |
-
# Calculate proximity between different classes
|
289 |
-
class_centers = {}
|
290 |
-
for cls_name, center in zip(class_names, centers):
|
291 |
-
if cls_name not in class_centers:
|
292 |
-
class_centers[cls_name] = []
|
293 |
-
class_centers[cls_name].append(center)
|
294 |
-
|
295 |
-
# Find classes that appear close to each other
|
296 |
-
proximity_pairs = []
|
297 |
-
for i, cls1 in enumerate(class_centers.keys()):
|
298 |
-
for j, cls2 in enumerate(class_centers.keys()):
|
299 |
-
if i >= j: # Avoid duplicate pairs and self-comparison
|
300 |
-
continue
|
301 |
-
|
302 |
-
# Calculate minimum distance between any two objects of these classes
|
303 |
-
min_distance = float('inf')
|
304 |
-
for center1 in class_centers[cls1]:
|
305 |
-
for center2 in class_centers[cls2]:
|
306 |
-
dist = np.sqrt((center1[0] - center2[0])**2 + (center1[1] - center2[1])**2)
|
307 |
-
min_distance = min(min_distance, dist)
|
308 |
-
|
309 |
-
# Normalize by image diagonal
|
310 |
-
img_diagonal = np.sqrt(img_width**2 + img_height**2)
|
311 |
-
norm_distance = min_distance / img_diagonal
|
312 |
-
|
313 |
-
proximity_pairs.append({
|
314 |
-
"class1": cls1,
|
315 |
-
"class2": cls2,
|
316 |
-
"distance": float(norm_distance)
|
317 |
-
})
|
318 |
-
|
319 |
-
# Sort by distance and keep the closest pairs
|
320 |
-
proximity_pairs.sort(key=lambda x: x["distance"])
|
321 |
-
metrics["proximity"] = proximity_pairs[:5] # Keep top 5 closest pairs
|
322 |
-
|
323 |
-
return metrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|