VisionScout / enhance_scene_describer.py
DawnC's picture
Upload 27 files
3172319 verified
raw
history blame
56.5 kB
import os
import re
import json
import random
import numpy as np
from typing import Dict, List, Tuple, Any, Optional
from scene_type import SCENE_TYPES
from scene_detail_templates import SCENE_DETAIL_TEMPLATES
from object_template_fillers import OBJECT_TEMPLATE_FILLERS
from lighting_conditions import LIGHTING_CONDITIONS
from viewpoint_templates import VIEWPOINT_TEMPLATES
from cultural_templates import CULTURAL_TEMPLATES
from confifence_templates import CONFIDENCE_TEMPLATES
class EnhancedSceneDescriber:
"""
Enhanced scene description generator with improved template handling,
viewpoint awareness, and cultural context recognition.
Provides detailed natural language descriptions of scenes based on
detection results and scene classification.
"""
def __init__(self, templates_db: Optional[Dict] = None, scene_types: Optional[Dict] = None):
"""
Initialize the enhanced scene describer.
Args:
templates_db: Optional custom templates database
scene_types: Dictionary of scene type definitions
"""
# Load or use provided scene types
self.scene_types = scene_types or self._load_default_scene_types()
# Load templates database
self.templates = templates_db or self._load_templates()
# Initialize viewpoint detection parameters
self._initialize_viewpoint_parameters()
def _load_default_scene_types(self) -> Dict:
"""
Load default scene types.
Returns:
Dict: Scene type definitions
"""
return SCENE_TYPES
def _load_templates(self) -> Dict:
"""
Load description templates from imported Python modules.
Returns:
Dict: Template collections for different description components
"""
templates = {}
# 直接從導入的 Python 模組中獲取模板
templates["scene_detail_templates"] = SCENE_DETAIL_TEMPLATES
templates["object_template_fillers"] = OBJECT_TEMPLATE_FILLERS
templates["viewpoint_templates"] = VIEWPOINT_TEMPLATES
templates["cultural_templates"] = CULTURAL_TEMPLATES
# 從 LIGHTING_CONDITIONS 獲取照明模板
templates["lighting_templates"] = {
key: data["general"] for key, data in LIGHTING_CONDITIONS.get("time_descriptions", {}).items()
}
# 設置默認的置信度模板
templates["confidence_templates"] = {
"high": "{description} {details}",
"medium": "This appears to be {description} {details}",
"low": "This might be {description}, but the confidence is low. {details}"
}
# 初始化其他必要的模板(現在這個函數簡化了很多)
self._initialize_default_templates(templates)
return templates
def _initialize_default_templates(self, templates: Dict):
"""
檢查模板字典並填充任何缺失的默認模板。
在將模板移至專門的模組後,此方法主要作為安全機制,
確保即使導入失敗或某些模板未在外部定義,系統仍能正常運行。
Args:
templates: 要檢查和更新的模板字典
"""
# 檢查關鍵模板類型是否存在,如果不存在則添加默認值
# 置信度模板 - 用於控制描述的語氣
if "confidence_templates" not in templates:
templates["confidence_templates"] = {
"high": "{description} {details}",
"medium": "This appears to be {description} {details}",
"low": "This might be {description}, but the confidence is low. {details}"
}
# 場景細節模板 - 如果未從外部導入
if "scene_detail_templates" not in templates:
templates["scene_detail_templates"] = {
"default": ["A space with various objects."]
}
# 物體填充模板 - 用於生成物體描述
if "object_template_fillers" not in templates:
templates["object_template_fillers"] = {
"default": ["various items"]
}
# 視角模板 - 雖然我們現在從專門模組導入,但作為備份
if "viewpoint_templates" not in templates:
# 使用簡化版的默認視角模板
templates["viewpoint_templates"] = {
"eye_level": {
"prefix": "From eye level, ",
"observation": "the scene is viewed straight on."
},
"aerial": {
"prefix": "From above, ",
"observation": "the scene is viewed from a bird's-eye perspective."
}
}
# 文化模板
if "cultural_templates" not in templates:
templates["cultural_templates"] = {
"asian": {
"elements": ["cultural elements"],
"description": "The scene has Asian characteristics."
},
"european": {
"elements": ["architectural features"],
"description": "The scene has European characteristics."
}
}
# 照明模板 - 用於描述光照條件
if "lighting_templates" not in templates:
templates["lighting_templates"] = {
"day_clear": "The scene is captured during daylight.",
"night": "The scene is captured at night.",
"unknown": "The lighting conditions are not easily determined."
}
def _initialize_viewpoint_parameters(self):
"""
Initialize parameters used for viewpoint detection.
"""
self.viewpoint_params = {
# Parameters for detecting aerial views
"aerial_threshold": 0.7, # High object density viewed from top
"aerial_size_variance_threshold": 0.15, # Low size variance in aerial views
# Parameters for detecting low angle views
"low_angle_threshold": 0.3, # Bottom-heavy object distribution
"vertical_size_ratio_threshold": 1.8, # Vertical objects appear taller
# Parameters for detecting elevated views
"elevated_threshold": 0.6, # Objects mostly in middle/bottom
"elevated_top_threshold": 0.3 # Few objects at top of frame
}
def generate_description(self,
scene_type: str,
detected_objects: List[Dict],
confidence: float,
lighting_info: Optional[Dict] = None,
functional_zones: Optional[Dict] = None) -> str:
"""
Generate enhanced scene description based on detection results, scene type,
and additional contextual information.
This is the main entry point that replaces the original _generate_scene_description.
Args:
scene_type: Identified scene type
detected_objects: List of detected objects
confidence: Scene classification confidence
lighting_info: Optional lighting condition information
functional_zones: Optional identified functional zones
Returns:
str: Natural language description of the scene
"""
# Handle unknown scene type or very low confidence
if scene_type == "unknown" or confidence < 0.4:
return self._generate_generic_description(detected_objects, lighting_info)
# Detect viewpoint
viewpoint = self._detect_viewpoint(detected_objects)
if viewpoint == "aerial":
# 如果是十字路口相關的場景,確保使用正確的空中視角十字路口場景類型
if "intersection" in scene_type or self._is_intersection(detected_objects):
scene_type = "aerial_view_intersection"
# 如果是商業區相關的場景
elif any(keyword in scene_type for keyword in ["commercial", "shopping", "retail"]):
scene_type = "aerial_view_commercial_area"
# 如果是廣場相關的場景
elif any(keyword in scene_type for keyword in ["plaza", "square"]):
scene_type = "aerial_view_plaza"
# 其他空中視角場景,預設使用十字路口
else:
scene_type = "aerial_view_intersection"
# Detect cultural context - 只有在非空中視角時才檢測文化上下文
cultural_context = None
if viewpoint != "aerial":
cultural_context = self._detect_cultural_context(scene_type, detected_objects)
# Select appropriate template based on confidence
if confidence > 0.75:
confidence_level = "high"
elif confidence > 0.5:
confidence_level = "medium"
else:
confidence_level = "low"
# Get base description for the scene type
if viewpoint == "aerial":
# 空中視角時使用已設定的基本描述
if 'base_description' not in locals():
base_description = "An aerial view showing the layout and movement patterns from above"
elif scene_type in self.scene_types:
base_description = self.scene_types[scene_type].get("description", "A scene")
else:
base_description = "A scene"
# Generate detailed scene information
scene_details = self._generate_scene_details(
scene_type,
detected_objects,
lighting_info,
viewpoint
)
# 修正:根據人數改進描述
people_objs = [obj for obj in detected_objects if obj["class_id"] == 0] # 人
if people_objs:
people_count = len(people_objs)
if people_count > 5:
# 當人數很多時,用更精確的措辭
people_phrase = f"numerous people ({people_count})"
else:
people_phrase = f"{people_count} {'people' if people_count > 1 else 'person'}"
# 將人數信息加入到場景詳情中
if "people" not in scene_details.lower() and "pedestrian" not in scene_details.lower():
scene_details += f" The scene includes {people_phrase}."
# Apply cultural context if detected (只在非空中視角時應用)
if cultural_context and scene_details and viewpoint != "aerial":
cultural_elements = self._generate_cultural_elements(cultural_context)
if cultural_elements:
scene_details += f" {cultural_elements}"
# Include lighting information if available
lighting_description = ""
if lighting_info and "time_of_day" in lighting_info:
lighting_type = lighting_info["time_of_day"]
if lighting_type in self.templates.get("lighting_templates", {}):
lighting_description = self.templates["lighting_templates"][lighting_type]
# Apply confidence template
description_template = self.templates["confidence_templates"].get(
confidence_level, "{description} {details}"
)
# Fill the template
description = description_template.format(
description=base_description,
details=scene_details
)
# Add viewpoint observation if viewpoint is not standard
if viewpoint != "eye_level" and viewpoint in self.templates.get("viewpoint_templates", {}):
viewpoint_template = self.templates["viewpoint_templates"][viewpoint]
# 在空中視角時,確保觀察描述反映更多細節
if viewpoint == "aerial":
scene_elements = "the crossing patterns and pedestrian movement"
else:
scene_elements = "objects and layout"
viewpoint_desc = viewpoint_template.get("observation", "").format(
scene_elements=scene_elements
)
# Add viewpoint prefix if needed
if not description.startswith(viewpoint_template.get("prefix", "")):
description = f"{viewpoint_template.get('prefix', '')}{description}"
# Add viewpoint observation if not already included
if viewpoint_desc not in description:
description += f" {viewpoint_desc}"
# Add lighting description if available
if lighting_description and lighting_description not in description:
description += f" {lighting_description}"
# Add information about functional zones if available
if functional_zones and len(functional_zones) > 0:
zones_desc = self._describe_functional_zones(functional_zones)
if zones_desc:
description += f" {zones_desc}"
# 計算真實的人數
people_count = len([obj for obj in detected_objects if obj["class_id"] == 0])
# 檢查描述中是否有人數信息的矛盾
if people_count > 5:
# 識別可能含有較小人數信息的片段
small_people_patterns = [
r"Area with \d+ people\.",
r"Area with \d+ person\.",
r"with \d+ people",
r"with \d+ person"
]
# 對每個模式檢查並移除
filtered_description = description
for pattern in small_people_patterns:
matches = re.findall(pattern, filtered_description)
for match in matches:
# 從匹配中提取人數
number_match = re.search(r'\d+', match)
if number_match:
try:
people_mentioned = int(number_match.group())
# 如果提到的人數小於總人數,移除整個句子
if people_mentioned < people_count:
# 將描述分割成句子
sentences = re.split(r'(?<=[.!?])\s+', filtered_description)
# 移除包含匹配片段的句子
filtered_sentences = []
for sentence in sentences:
if match not in sentence:
filtered_sentences.append(sentence)
# 重新組合描述
filtered_description = " ".join(filtered_sentences)
except ValueError:
# 數字轉換失敗,繼續處理
continue
# 使用過濾後的描述
description = filtered_description
return description
def _is_intersection(self, detected_objects: List[Dict]) -> bool:
"""
通過分析物體分佈來判斷場景是否為十字路口
"""
# 檢查行人分佈模式
pedestrians = [obj for obj in detected_objects if obj["class_id"] == 0]
if len(pedestrians) >= 8: # 需要足夠的行人來形成十字路口
# 抓取行人位置
positions = [obj.get("normalized_center", (0, 0)) for obj in pedestrians]
# 分析 x 和 y 坐標分佈
x_coords = [pos[0] for pos in positions]
y_coords = [pos[1] for pos in positions]
# 計算 x 和 y 坐標的變異數
x_variance = np.var(x_coords) if len(x_coords) > 1 else 0
y_variance = np.var(y_coords) if len(y_coords) > 1 else 0
# 計算範圍
x_range = max(x_coords) - min(x_coords)
y_range = max(y_coords) - min(y_coords)
# 如果 x 和 y 方向都有較大範圍且範圍相似,那就有可能是十字路口
if x_range > 0.5 and y_range > 0.5 and 0.7 < (x_range / y_range) < 1.3:
return True
return False
def _generate_generic_description(self, detected_objects: List[Dict], lighting_info: Optional[Dict] = None) -> str:
"""
Generate a generic description when scene type is unknown or confidence is very low.
Args:
detected_objects: List of detected objects
lighting_info: Optional lighting condition information
Returns:
str: Generic description based on detected objects
"""
# Count object occurrences
obj_counts = {}
for obj in detected_objects:
class_name = obj["class_name"]
if class_name not in obj_counts:
obj_counts[class_name] = 0
obj_counts[class_name] += 1
# Get top objects by count
top_objects = sorted(obj_counts.items(), key=lambda x: x[1], reverse=True)[:5]
if not top_objects:
base_desc = "No clearly identifiable objects are visible in this scene."
else:
# Format object list
objects_text = []
for name, count in top_objects:
if count > 1:
objects_text.append(f"{count} {name}s")
else:
objects_text.append(name)
if len(objects_text) == 1:
objects_list = objects_text[0]
elif len(objects_text) == 2:
objects_list = f"{objects_text[0]} and {objects_text[1]}"
else:
objects_list = ", ".join(objects_text[:-1]) + f", and {objects_text[-1]}"
base_desc = f"This scene contains {objects_list}."
# Add lighting information if available
if lighting_info and "time_of_day" in lighting_info:
lighting_type = lighting_info["time_of_day"]
if lighting_type in self.templates.get("lighting_templates", {}):
lighting_desc = self.templates["lighting_templates"][lighting_type]
base_desc += f" {lighting_desc}"
return base_desc
def _generate_scene_details(self,
scene_type: str,
detected_objects: List[Dict],
lighting_info: Optional[Dict] = None,
viewpoint: str = "eye_level") -> str:
"""
Generate detailed description based on scene type and detected objects.
Args:
scene_type: Identified scene type
detected_objects: List of detected objects
lighting_info: Optional lighting condition information
viewpoint: Detected viewpoint (aerial, eye_level, etc.)
Returns:
str: Detailed scene description
"""
# Get scene-specific templates
scene_details = ""
scene_templates = self.templates.get("scene_detail_templates", {})
# Handle specific scene types
if scene_type in scene_templates:
# Select a template appropriate for the viewpoint if available
viewpoint_key = f"{scene_type}_{viewpoint}"
if viewpoint_key in scene_templates:
# We have a viewpoint-specific template
templates_list = scene_templates[viewpoint_key]
else:
# Fall back to general templates for this scene type
templates_list = scene_templates[scene_type]
# Select a random template from the list
if templates_list:
detail_template = random.choice(templates_list)
# Fill the template with object information
scene_details = self._fill_detail_template(
detail_template,
detected_objects,
scene_type
)
else:
# Use default templates if specific ones aren't available
if "default" in scene_templates:
detail_template = random.choice(scene_templates["default"])
scene_details = self._fill_detail_template(
detail_template,
detected_objects,
"default"
)
else:
# Fall back to basic description if no templates are available
scene_details = self._generate_basic_details(scene_type, detected_objects)
return scene_details
def _fill_detail_template(self, template: str, detected_objects: List[Dict], scene_type: str) -> str:
"""
Fill a template with specific details based on detected objects.
Args:
template: Template string with placeholders
detected_objects: List of detected objects
scene_type: Identified scene type
Returns:
str: Filled template
"""
# Find placeholders in the template using simple {placeholder} syntax
import re
placeholders = re.findall(r'\{([^}]+)\}', template)
filled_template = template
# Get object template fillers
fillers = self.templates.get("object_template_fillers", {})
# 為所有可能的變數設置默認值
default_replacements = {
# 室內相關
"furniture": "various furniture pieces",
"seating": "comfortable seating",
"electronics": "entertainment devices",
"bed_type": "a bed",
"bed_location": "room",
"bed_description": "sleeping arrangements",
"extras": "personal items",
"table_setup": "a dining table and chairs",
"table_description": "a dining surface",
"dining_items": "dining furniture and tableware",
"appliances": "kitchen appliances",
"kitchen_items": "cooking utensils and dishware",
"cooking_equipment": "cooking equipment",
"office_equipment": "work-related furniture and devices",
"desk_setup": "a desk and chair",
"computer_equipment": "electronic devices",
# 室外/城市相關
"traffic_description": "vehicles and pedestrians",
"people_and_vehicles": "people and various vehicles",
"street_elements": "urban infrastructure",
"park_features": "benches and greenery",
"outdoor_elements": "natural features",
"park_description": "outdoor amenities",
"store_elements": "merchandise displays",
"shopping_activity": "customers browse and shop",
"store_items": "products for sale",
# 高級餐廳相關
"design_elements": "elegant decor",
"lighting": "stylish lighting fixtures",
# 亞洲商業街相關
"storefront_features": "compact shops",
"pedestrian_flow": "people walking",
"asian_elements": "distinctive cultural elements",
"cultural_elements": "traditional design features",
"signage": "colorful signs",
"street_activities": "busy urban activity",
# 金融區相關
"buildings": "tall buildings",
"traffic_elements": "vehicles",
"skyscrapers": "high-rise buildings",
"road_features": "wide streets",
"architectural_elements": "modern architecture",
"city_landmarks": "prominent structures",
# 十字路口相關
"crossing_pattern": "marked pedestrian crossings",
"pedestrian_behavior": "careful walking",
"pedestrian_density": "groups of pedestrians",
"traffic_pattern": "regulated traffic flow",
# 交通樞紐相關
"transit_vehicles": "public transportation vehicles",
"passenger_activity": "commuter movement",
"transportation_modes": "various transit options",
"passenger_needs": "waiting areas",
"transit_infrastructure": "transit facilities",
"passenger_movement": "commuter flow",
# 購物區相關
"retail_elements": "shops and displays",
"store_types": "various retail establishments",
"walkway_features": "pedestrian pathways",
"commercial_signage": "store signs",
"consumer_behavior": "shopping activities",
# 空中視角相關
"commercial_layout": "organized retail areas",
"pedestrian_pattern": "people movement patterns",
"gathering_features": "public gathering spaces",
"movement_pattern": "crowd flow patterns",
"urban_elements": "city infrastructure",
"public_activity": "social interaction",
# 文化特定元素
"stall_elements": "vendor booths",
"lighting_features": "decorative lights",
"food_elements": "food offerings",
"vendor_stalls": "market stalls",
"nighttime_activity": "evening commerce",
"cultural_lighting": "traditional lighting",
"night_market_sounds": "lively market sounds",
"evening_crowd_behavior": "nighttime social activity",
"architectural_elements": "cultural buildings",
"religious_structures": "sacred buildings",
"decorative_features": "ornamental designs",
"cultural_practices": "traditional activities",
"temple_architecture": "religious structures",
"sensory_elements": "atmospheric elements",
"visitor_activities": "cultural experiences",
"ritual_activities": "ceremonial practices",
"cultural_symbols": "meaningful symbols",
"architectural_style": "historical buildings",
"historic_elements": "traditional architecture",
"urban_design": "city planning elements",
"social_behaviors": "public interactions",
"european_features": "European architectural details",
"tourist_activities": "visitor activities",
"local_customs": "regional practices",
# 時間特定元素
"lighting_effects": "artificial lighting",
"shadow_patterns": "light and shadow",
"urban_features": "city elements",
"illuminated_elements": "lit structures",
"evening_activities": "nighttime activities",
"light_sources": "lighting points",
"lit_areas": "illuminated spaces",
"shadowed_zones": "darker areas",
"illuminated_signage": "bright signs",
"colorful_lighting": "multicolored lights",
"neon_elements": "neon signs",
"night_crowd_behavior": "evening social patterns",
"light_displays": "lighting installations",
"building_features": "architectural elements",
"nightlife_activities": "evening entertainment",
"lighting_modifier": "bright",
# 混合環境元素
"transitional_elements": "connecting features",
"indoor_features": "interior elements",
"outdoor_setting": "exterior spaces",
"interior_amenities": "inside comforts",
"exterior_features": "outside elements",
"inside_elements": "interior design",
"outside_spaces": "outdoor areas",
"dual_environment_benefits": "combined settings",
"passenger_activities": "waiting behaviors",
"transportation_types": "transit vehicles",
"sheltered_elements": "covered areas",
"exposed_areas": "open sections",
"waiting_behaviors": "passenger activities",
"indoor_facilities": "inside services",
"platform_features": "transit platform elements",
"transit_routines": "transportation procedures",
# 專門場所元素
"seating_arrangement": "spectator seating",
"playing_surface": "athletic field",
"sporting_activities": "sports events",
"spectator_facilities": "viewer accommodations",
"competition_space": "sports arena",
"sports_events": "athletic competitions",
"viewing_areas": "audience sections",
"field_elements": "field markings and equipment",
"game_activities": "competitive play",
"construction_equipment": "building machinery",
"building_materials": "construction supplies",
"construction_activities": "building work",
"work_elements": "construction tools",
"structural_components": "building structures",
"site_equipment": "construction gear",
"raw_materials": "building supplies",
"construction_process": "building phases",
"medical_elements": "healthcare equipment",
"clinical_activities": "medical procedures",
"facility_design": "healthcare layout",
"healthcare_features": "medical facilities",
"patient_interactions": "care activities",
"equipment_types": "medical devices",
"care_procedures": "health services",
"treatment_spaces": "clinical areas",
"educational_furniture": "learning furniture",
"learning_activities": "educational practices",
"instructional_design": "teaching layout",
"classroom_elements": "school equipment",
"teaching_methods": "educational approaches",
"student_engagement": "learning participation",
"learning_spaces": "educational areas",
"educational_tools": "teaching resources",
"knowledge_transfer": "learning exchanges"
}
# For each placeholder, try to fill with appropriate content
for placeholder in placeholders:
if placeholder in fillers:
# Get random filler for this placeholder
options = fillers[placeholder]
if options:
# Select 1-3 items from the options list
num_items = min(len(options), random.randint(1, 3))
selected_items = random.sample(options, num_items)
# Create a formatted list
if len(selected_items) == 1:
replacement = selected_items[0]
elif len(selected_items) == 2:
replacement = f"{selected_items[0]} and {selected_items[1]}"
else:
replacement = ", ".join(selected_items[:-1]) + f", and {selected_items[-1]}"
# Replace the placeholder
filled_template = filled_template.replace(f"{{{placeholder}}}", replacement)
else:
# Try to fill with scene-specific logic
replacement = self._generate_placeholder_content(placeholder, detected_objects, scene_type)
if replacement:
filled_template = filled_template.replace(f"{{{placeholder}}}", replacement)
elif placeholder in default_replacements:
# Use default replacement if available
filled_template = filled_template.replace(f"{{{placeholder}}}", default_replacements[placeholder])
else:
# Last resort default
filled_template = filled_template.replace(f"{{{placeholder}}}", "various items")
return filled_template
def _generate_placeholder_content(self, placeholder: str, detected_objects: List[Dict], scene_type: str) -> str:
"""
Generate content for a template placeholder based on scene-specific logic.
Args:
placeholder: Template placeholder
detected_objects: List of detected objects
scene_type: Identified scene type
Returns:
str: Content for the placeholder
"""
# Handle different types of placeholders with custom logic
if placeholder == "furniture":
# Extract furniture items
furniture_ids = [56, 57, 58, 59, 60, 61] # Example furniture IDs
furniture_objects = [obj for obj in detected_objects if obj["class_id"] in furniture_ids]
if furniture_objects:
furniture_names = [obj["class_name"] for obj in furniture_objects[:3]]
return ", ".join(set(furniture_names))
return "various furniture items"
elif placeholder == "electronics":
# Extract electronic items
electronics_ids = [62, 63, 64, 65, 66, 67, 68, 69, 70] # Example electronics IDs
electronics_objects = [obj for obj in detected_objects if obj["class_id"] in electronics_ids]
if electronics_objects:
electronics_names = [obj["class_name"] for obj in electronics_objects[:3]]
return ", ".join(set(electronics_names))
return "electronic devices"
elif placeholder == "people_count":
# Count people
people_count = len([obj for obj in detected_objects if obj["class_id"] == 0])
if people_count == 0:
return "no people"
elif people_count == 1:
return "one person"
elif people_count < 5:
return f"{people_count} people"
else:
return "several people"
elif placeholder == "seating":
# Extract seating items
seating_ids = [56, 57] # chair, sofa
seating_objects = [obj for obj in detected_objects if obj["class_id"] in seating_ids]
if seating_objects:
seating_names = [obj["class_name"] for obj in seating_objects[:2]]
return ", ".join(set(seating_names))
return "seating arrangements"
# Default case - empty string
return ""
def _generate_basic_details(self, scene_type: str, detected_objects: List[Dict]) -> str:
"""
Generate basic details when templates aren't available.
Args:
scene_type: Identified scene type
detected_objects: List of detected objects
Returns:
str: Basic scene details
"""
# Handle specific scene types with custom logic
if scene_type == "living_room":
tv_objs = [obj for obj in detected_objects if obj["class_id"] == 62] # TV
sofa_objs = [obj for obj in detected_objects if obj["class_id"] == 57] # Sofa
if tv_objs and sofa_objs:
tv_region = tv_objs[0]["region"]
sofa_region = sofa_objs[0]["region"]
arrangement = f"The TV is in the {tv_region.replace('_', ' ')} of the image, "
arrangement += f"while the sofa is in the {sofa_region.replace('_', ' ')}. "
return f"{arrangement}This appears to be a space designed for relaxation and entertainment."
elif scene_type == "bedroom":
bed_objs = [obj for obj in detected_objects if obj["class_id"] == 59] # Bed
if bed_objs:
bed_region = bed_objs[0]["region"]
extra_items = []
for obj in detected_objects:
if obj["class_id"] == 74: # Clock
extra_items.append("clock")
elif obj["class_id"] == 73: # Book
extra_items.append("book")
extras = ""
if extra_items:
extras = f" There is also a {' and a '.join(extra_items)} visible."
return f"The bed is located in the {bed_region.replace('_', ' ')} of the image.{extras}"
elif scene_type in ["dining_area", "kitchen"]:
# Count food and dining-related items
food_items = []
for obj in detected_objects:
if obj["class_id"] in [39, 41, 42, 43, 44, 45]: # Kitchen items
food_items.append(obj["class_name"])
food_str = ""
if food_items:
unique_items = list(set(food_items))
if len(unique_items) <= 3:
food_str = f" with {', '.join(unique_items)}"
else:
food_str = f" with {', '.join(unique_items[:3])} and other items"
return f"{food_str}."
elif scene_type == "city_street":
# Count people and vehicles
people_count = len([obj for obj in detected_objects if obj["class_id"] == 0])
vehicle_count = len([obj for obj in detected_objects
if obj["class_id"] in [1, 2, 3, 5, 7]]) # Bicycle, car, motorbike, bus, truck
traffic_desc = ""
if people_count > 0 and vehicle_count > 0:
traffic_desc = f" with {people_count} {'people' if people_count > 1 else 'person'} and "
traffic_desc += f"{vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}"
elif people_count > 0:
traffic_desc = f" with {people_count} {'people' if people_count > 1 else 'person'}"
elif vehicle_count > 0:
traffic_desc = f" with {vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}"
return f"{traffic_desc}."
# Handle more specialized scenes
elif scene_type == "asian_commercial_street":
# Look for key urban elements
people_count = len([obj for obj in detected_objects if obj["class_id"] == 0])
vehicle_count = len([obj for obj in detected_objects if obj["class_id"] in [1, 2, 3]])
# Analyze pedestrian distribution
people_positions = []
for obj in detected_objects:
if obj["class_id"] == 0: # Person
people_positions.append(obj["normalized_center"])
# Check if people are distributed along a line (indicating a walking path)
structured_path = False
if len(people_positions) >= 3:
# Simplified check - see if y-coordinates are similar for multiple people
y_coords = [pos[1] for pos in people_positions]
y_mean = sum(y_coords) / len(y_coords)
y_variance = sum((y - y_mean)**2 for y in y_coords) / len(y_coords)
if y_variance < 0.05: # Low variance indicates linear arrangement
structured_path = True
street_desc = "A commercial street with "
if people_count > 0:
street_desc += f"{people_count} {'pedestrians' if people_count > 1 else 'pedestrian'}"
if vehicle_count > 0:
street_desc += f" and {vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}"
elif vehicle_count > 0:
street_desc += f"{vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}"
else:
street_desc += "various commercial elements"
if structured_path:
street_desc += ". The pedestrians appear to be following a defined walking path"
# Add cultural elements
street_desc += ". The signage and architectural elements suggest an Asian urban setting."
return street_desc
# Default general description
return "The scene contains various elements characteristic of this environment."
def _detect_viewpoint(self, detected_objects: List[Dict]) -> str:
"""
改進視角檢測,特別加強對空中俯視視角的識別。
Args:
detected_objects: 檢測到的物體列表
Returns:
str: 檢測到的視角類型
"""
if not detected_objects:
return "eye_level" # default
# 提取物體位置和大小
top_region_count = 0
bottom_region_count = 0
total_objects = len(detected_objects)
# 追蹤大小分布以檢測空中視角
sizes = []
# 垂直大小比例用於低角度檢測
height_width_ratios = []
# 用於檢測規則圖案的變數
people_positions = []
crosswalk_pattern_detected = False
for obj in detected_objects:
# 計算頂部/底部區域中的物體
region = obj["region"]
if "top" in region:
top_region_count += 1
elif "bottom" in region:
bottom_region_count += 1
# 計算標準化大小(面積)
if "normalized_area" in obj:
sizes.append(obj["normalized_area"])
# 計算高度/寬度比例
if "normalized_size" in obj:
width, height = obj["normalized_size"]
if width > 0:
height_width_ratios.append(height / width)
# 收集人的位置用於圖案檢測
if obj["class_id"] == 0: # 人
if "normalized_center" in obj:
people_positions.append(obj["normalized_center"])
# 專門為斑馬線十字路口添加檢測邏輯
# 檢查是否有明顯的垂直和水平行人分布
people_objs = [obj for obj in detected_objects if obj["class_id"] == 0] # 人
if len(people_objs) >= 8: # 需要足夠多的人才能形成十字路口模式
# 檢查是否有斑馬線模式 - 新增功能
if len(people_positions) >= 4:
# 對位置進行聚類分析,尋找線性分布
x_coords = [pos[0] for pos in people_positions]
y_coords = [pos[1] for pos in people_positions]
# 計算 x 和 y 坐標的變異數和範圍
x_variance = np.var(x_coords) if len(x_coords) > 1 else 0
y_variance = np.var(y_coords) if len(y_coords) > 1 else 0
x_range = max(x_coords) - min(x_coords)
y_range = max(y_coords) - min(y_coords)
# 嘗試檢測十字形分布
# 如果 x 和 y 方向都有較大範圍,且範圍相似,可能是十字路口
if x_range > 0.5 and y_range > 0.5 and 0.7 < (x_range / y_range) < 1.3:
# 計算到中心點的距離
center_x = np.mean(x_coords)
center_y = np.mean(y_coords)
# 將點映射到十字架的軸上(水平和垂直)
x_axis_distance = [abs(x - center_x) for x in x_coords]
y_axis_distance = [abs(y - center_y) for y in y_coords]
# 點應該接近軸線(水平或垂直)
# 對於每個點,檢查它是否接近水平或垂直軸線
close_to_axis_count = 0
for i in range(len(x_coords)):
if x_axis_distance[i] < 0.1 or y_axis_distance[i] < 0.1:
close_to_axis_count += 1
# 如果足夠多的點接近軸線,認為是十字路口
if close_to_axis_count >= len(x_coords) * 0.6:
crosswalk_pattern_detected = True
# 如果沒有檢測到十字形,嘗試檢測線性聚類分布
if not crosswalk_pattern_detected:
# 檢查 x 和 y 方向的聚類
x_clusters = self._detect_linear_clusters(x_coords)
y_clusters = self._detect_linear_clusters(y_coords)
# 如果在 x 和 y 方向上都有多個聚類,可能是交叉的斑馬線
if len(x_clusters) >= 2 and len(y_clusters) >= 2:
crosswalk_pattern_detected = True
# 檢測斑馬線模式 - 優先判斷
if crosswalk_pattern_detected:
return "aerial"
# 檢測行人分布情況
if len(people_objs) >= 10:
people_region_counts = {}
for obj in people_objs:
region = obj["region"]
if region not in people_region_counts:
people_region_counts[region] = 0
people_region_counts[region] += 1
# 計算不同區域中的行人數量
region_count = len([r for r, c in people_region_counts.items() if c >= 2])
# 如果行人分布在多個區域中,可能是空中視角
if region_count >= 4:
# 檢查行人分布的模式
# 特別是檢查不同區域中行人數量的差異
region_counts = list(people_region_counts.values())
region_counts_variance = np.var(region_counts) if len(region_counts) > 1 else 0
region_counts_mean = np.mean(region_counts) if region_counts else 0
# 如果行人分布較為均勻(變異係數小),可能是空中視角
if region_counts_mean > 0:
variation_coefficient = region_counts_variance / region_counts_mean
if variation_coefficient < 0.5:
return "aerial"
# 計算指標
top_ratio = top_region_count / total_objects if total_objects > 0 else 0
bottom_ratio = bottom_region_count / total_objects if total_objects > 0 else 0
# 大小變異數(標準化)
size_variance = 0
if sizes:
mean_size = sum(sizes) / len(sizes)
size_variance = sum((s - mean_size) ** 2 for s in sizes) / len(sizes)
size_variance = size_variance / (mean_size ** 2) # 標準化
# 平均高度/寬度比例
avg_height_width_ratio = sum(height_width_ratios) / len(height_width_ratios) if height_width_ratios else 1.0
# 空中視角:低大小差異,物體均勻分布,底部很少或沒有物體
if (size_variance < self.viewpoint_params["aerial_size_variance_threshold"] and
bottom_ratio < 0.3 and top_ratio > self.viewpoint_params["aerial_threshold"]):
return "aerial"
# 低角度視角:物體傾向於比寬高,頂部較多物體
elif (avg_height_width_ratio > self.viewpoint_params["vertical_size_ratio_threshold"] and
top_ratio > self.viewpoint_params["low_angle_threshold"]):
return "low_angle"
# 高視角:底部較多物體,頂部較少
elif (bottom_ratio > self.viewpoint_params["elevated_threshold"] and
top_ratio < self.viewpoint_params["elevated_top_threshold"]):
return "elevated"
# 默認:平視角
return "eye_level"
def _detect_linear_clusters(self, coords, threshold=0.05):
"""
檢測坐標中的線性聚類
Args:
coords: 一維坐標列表
threshold: 聚類閾值
Returns:
list: 聚類列表
"""
if not coords:
return []
# 排序坐標
sorted_coords = sorted(coords)
clusters = []
current_cluster = [sorted_coords[0]]
for i in range(1, len(sorted_coords)):
# 如果當前坐標與前一個接近,添加到當前聚類
if sorted_coords[i] - sorted_coords[i-1] < threshold:
current_cluster.append(sorted_coords[i])
else:
# 否則開始新的聚類
if len(current_cluster) >= 2: # 至少需要2個點形成聚類
clusters.append(current_cluster)
current_cluster = [sorted_coords[i]]
# 添加最後一個cluster
if len(current_cluster) >= 2:
clusters.append(current_cluster)
return clusters
def _detect_cultural_context(self, scene_type: str, detected_objects: List[Dict]) -> Optional[str]:
"""
Detect the likely cultural context of the scene.
Args:
scene_type: Identified scene type
detected_objects: List of detected objects
Returns:
Optional[str]: Detected cultural context (asian, european, etc.) or None
"""
# Scene types with explicit cultural contexts
cultural_scene_mapping = {
"asian_commercial_street": "asian",
"asian_night_market": "asian",
"asian_temple_area": "asian",
"european_plaza": "european"
}
# Check if scene type directly indicates cultural context
if scene_type in cultural_scene_mapping:
return cultural_scene_mapping[scene_type]
# No specific cultural context detected
return None
def _generate_cultural_elements(self, cultural_context: str) -> str:
"""
Generate description of cultural elements for the detected context.
Args:
cultural_context: Detected cultural context
Returns:
str: Description of cultural elements
"""
# Get template for this cultural context
cultural_templates = self.templates.get("cultural_templates", {})
if cultural_context in cultural_templates:
template = cultural_templates[cultural_context]
elements = template.get("elements", [])
if elements:
# Select 1-2 random elements
num_elements = min(len(elements), random.randint(1, 2))
selected_elements = random.sample(elements, num_elements)
# Format elements list
elements_text = " and ".join(selected_elements) if num_elements == 2 else selected_elements[0]
# Fill template
return template.get("description", "").format(elements=elements_text)
return ""
def _optimize_object_description(self, description: str) -> str:
"""
優化物品描述,避免重複列舉相同物品
"""
import re
# 處理床鋪重複描述
if "bed in the room" in description:
description = description.replace("a bed in the room", "a bed")
# 處理重複的物品列表
# 尋找格式如 "item, item, item" 的模式
object_lists = re.findall(r'with ([^\.]+?)(?:\.|\band\b)', description)
for obj_list in object_lists:
# 計算每個物品出現次數
items = re.findall(r'([a-zA-Z\s]+)(?:,|\band\b|$)', obj_list)
item_counts = {}
for item in items:
item = item.strip()
if item and item not in ["and", "with"]:
if item not in item_counts:
item_counts[item] = 0
item_counts[item] += 1
# 生成優化後的物品列表
if item_counts:
new_items = []
for item, count in item_counts.items():
if count > 1:
new_items.append(f"{count} {item}s")
else:
new_items.append(item)
# 格式化新列表
if len(new_items) == 1:
new_list = new_items[0]
elif len(new_items) == 2:
new_list = f"{new_items[0]} and {new_items[1]}"
else:
new_list = ", ".join(new_items[:-1]) + f", and {new_items[-1]}"
# 替換原始列表
description = description.replace(obj_list, new_list)
return description
def _describe_functional_zones(self, functional_zones: Dict) -> str:
"""
生成場景功能區域的描述,優化處理行人區域、人數統計和物品重複問題。
Args:
functional_zones: 識別出的功能區域字典
Returns:
str: 功能區域描述
"""
if not functional_zones:
return ""
# 計算場景中的總人數
total_people_count = 0
people_by_zone = {}
# 計算每個區域的人數並累計總人數
for zone_name, zone_info in functional_zones.items():
if "objects" in zone_info:
zone_people_count = zone_info["objects"].count("person")
people_by_zone[zone_name] = zone_people_count
total_people_count += zone_people_count
# 分類區域為行人區域和其他區域
pedestrian_zones = []
other_zones = []
for zone_name, zone_info in functional_zones.items():
# 檢查是否是行人相關區域
if any(keyword in zone_name.lower() for keyword in ["pedestrian", "crossing", "people"]):
pedestrian_zones.append((zone_name, zone_info))
else:
other_zones.append((zone_name, zone_info))
# 獲取最重要的行人區域和其他區域
main_pedestrian_zones = sorted(pedestrian_zones,
key=lambda z: people_by_zone.get(z[0], 0),
reverse=True)[:1] # 最多1個主要行人區域
top_other_zones = sorted(other_zones,
key=lambda z: len(z[1].get("objects", [])),
reverse=True)[:2] # 最多2個其他區域
# 合併區域
top_zones = main_pedestrian_zones + top_other_zones
if not top_zones:
return ""
# 生成匯總描述
summary = ""
max_mentioned_people = 0 # 跟踪已經提到的最大人數
# 如果總人數顯著且還沒在主描述中提到,添加總人數描述
if total_people_count > 5:
summary = f"The scene contains a significant number of pedestrians ({total_people_count} people). "
max_mentioned_people = total_people_count # 更新已提到的最大人數
# 處理每個區域的描述,確保人數信息的一致性
processed_zones = []
for zone_name, zone_info in top_zones:
zone_desc = zone_info.get("description", "a functional zone")
zone_people_count = people_by_zone.get(zone_name, 0)
# 檢查描述中是否包含人數信息
contains_people_info = "with" in zone_desc and ("person" in zone_desc.lower() or "people" in zone_desc.lower())
# 如果描述包含人數信息,且人數較小(小於已提到的最大人數),則修改描述
if contains_people_info and zone_people_count < max_mentioned_people:
parts = zone_desc.split("with")
if len(parts) > 1:
# 移除人數部分
zone_desc = parts[0].strip() + " area"
processed_zones.append((zone_name, {"description": zone_desc}))
# 根據處理後的區域數量生成最終描述
final_desc = ""
if len(processed_zones) == 1:
_, zone_info = processed_zones[0]
zone_desc = zone_info["description"]
final_desc = summary + f"The scene includes {zone_desc}."
elif len(processed_zones) == 2:
_, zone1_info = processed_zones[0]
_, zone2_info = processed_zones[1]
zone1_desc = zone1_info["description"]
zone2_desc = zone2_info["description"]
final_desc = summary + f"The scene is divided into two main areas: {zone1_desc} and {zone2_desc}."
else:
zones_desc = ["The scene contains multiple functional areas including"]
zone_descriptions = [z[1]["description"] for z in processed_zones]
# 格式化最終的多區域描述
if len(zone_descriptions) == 3:
formatted_desc = f"{zone_descriptions[0]}, {zone_descriptions[1]}, and {zone_descriptions[2]}"
else:
formatted_desc = ", ".join(zone_descriptions[:-1]) + f", and {zone_descriptions[-1]}"
final_desc = summary + f"{zones_desc[0]} {formatted_desc}."
return self._optimize_object_description(final_desc)