File size: 16,497 Bytes
3172319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import torch
import clip
import numpy as np
from PIL import Image
from typing import Dict, List, Tuple, Any, Optional, Union
from clip_prompts import (
    SCENE_TYPE_PROMPTS,
    CULTURAL_SCENE_PROMPTS,
    COMPARATIVE_PROMPTS,
    LIGHTING_CONDITION_PROMPTS,
    SPECIALIZED_SCENE_PROMPTS,
    VIEWPOINT_PROMPTS,
    OBJECT_COMBINATION_PROMPTS,
    ACTIVITY_PROMPTS
)

class CLIPAnalyzer:
    """
    Use Clip to intergrate scene understanding function
    """

    def __init__(self, model_name: str = "ViT-B/32", device: str = None):
        """
        初始化 CLIP 分析器。

        Args:
            model_name: CLIP Model name,  "ViT-B/32"、"ViT-B/16"、"ViT-L/14" 
            device: Use GPU if it can use
        """
        # 自動選擇設備
        if device is None:
            self.device = "cuda" if torch.cuda.is_available() else "cpu"
        else:
            self.device = device

        print(f"Loading CLIP model {model_name} on {self.device}...")
        try:
            self.model, self.preprocess = clip.load(model_name, device=self.device)
            print(f"CLIP model loaded successfully.")
        except Exception as e:
            print(f"Error loading CLIP model: {e}")
            raise

        self.scene_type_prompts = SCENE_TYPE_PROMPTS
        self.cultural_scene_prompts = CULTURAL_SCENE_PROMPTS
        self.comparative_prompts = COMPARATIVE_PROMPTS
        self.lighting_condition_prompts = LIGHTING_CONDITION_PROMPTS
        self.specialized_scene_prompts = SPECIALIZED_SCENE_PROMPTS
        self.viewpoint_prompts = VIEWPOINT_PROMPTS
        self.object_combination_prompts = OBJECT_COMBINATION_PROMPTS
        self.activity_prompts = ACTIVITY_PROMPTS

        # turn to CLIP format
        self._prepare_text_prompts()

    def _prepare_text_prompts(self):
        """準備所有文本提示的 CLIP 特徵"""
        # base prompt
        scene_texts = [self.scene_type_prompts[scene_type] for scene_type in self.scene_type_prompts]
        self.scene_type_tokens = clip.tokenize(scene_texts).to(self.device)

        # cultural
        self.cultural_tokens_dict = {}
        for scene_type, prompts in self.cultural_scene_prompts.items():
            self.cultural_tokens_dict[scene_type] = clip.tokenize(prompts).to(self.device)

        # Light
        lighting_texts = [self.lighting_condition_prompts[cond] for cond in self.lighting_condition_prompts]
        self.lighting_tokens = clip.tokenize(lighting_texts).to(self.device)

        # specializes_status
        self.specialized_tokens_dict = {}
        for scene_type, prompts in self.specialized_scene_prompts.items():
            self.specialized_tokens_dict[scene_type] = clip.tokenize(prompts).to(self.device)

        # view point
        viewpoint_texts = [self.viewpoint_prompts[viewpoint] for viewpoint in self.viewpoint_prompts]
        self.viewpoint_tokens = clip.tokenize(viewpoint_texts).to(self.device)

        # object combination
        object_combination_texts = [self.object_combination_prompts[combo] for combo in self.object_combination_prompts]
        self.object_combination_tokens = clip.tokenize(object_combination_texts).to(self.device)

        # activicty prompt
        activity_texts = [self.activity_prompts[activity] for activity in self.activity_prompts]
        self.activity_tokens = clip.tokenize(activity_texts).to(self.device)

    def analyze_image(self, image, include_cultural_analysis: bool = True) -> Dict[str, Any]:
        """
        分析圖像,預測場景類型和光照條件。

        Args:
            image: 輸入圖像 (PIL Image 或 numpy array)
            include_cultural_analysis: 是否包含文化場景的詳細分析

        Returns:
            Dict: 包含場景類型預測和光照條件的分析結果
        """
        try:
            # 確保圖像是 PIL 格式
            if not isinstance(image, Image.Image):
                if isinstance(image, np.ndarray):
                    image = Image.fromarray(image)
                else:
                    raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")

            # 預處理圖像
            image_input = self.preprocess(image).unsqueeze(0).to(self.device)

            # 獲取圖像特徵
            with torch.no_grad():
                image_features = self.model.encode_image(image_input)
                image_features = image_features / image_features.norm(dim=-1, keepdim=True)

            # 分析場景類型
            scene_scores = self._analyze_scene_type(image_features)

            # 分析光照條件
            lighting_scores = self._analyze_lighting_condition(image_features)

            # 文化場景的增強分析
            cultural_analysis = {}
            if include_cultural_analysis:
                for scene_type in self.cultural_scene_prompts:
                    if scene_type in scene_scores and scene_scores[scene_type] > 0.2:
                        cultural_analysis[scene_type] = self._analyze_cultural_scene(
                            image_features, scene_type
                        )

            specialized_analysis = {}
            for scene_type in self.specialized_scene_prompts:
                if scene_type in scene_scores and scene_scores[scene_type] > 0.2:
                    specialized_analysis[scene_type] = self._analyze_specialized_scene(
                        image_features, scene_type
                    )

            viewpoint_scores = self._analyze_viewpoint(image_features)

            object_combination_scores = self._analyze_object_combinations(image_features)

            activity_scores = self._analyze_activities(image_features)

            # display results
            result = {
                "scene_scores": scene_scores,
                "top_scene": max(scene_scores.items(), key=lambda x: x[1]),
                "lighting_condition": max(lighting_scores.items(), key=lambda x: x[1]),
                "embedding": image_features.cpu().numpy().tolist()[0] if self.device == "cuda" else image_features.numpy().tolist()[0],
                "viewpoint": max(viewpoint_scores.items(), key=lambda x: x[1]),
                "object_combinations": sorted(object_combination_scores.items(), key=lambda x: x[1], reverse=True)[:3],
                "activities": sorted(activity_scores.items(), key=lambda x: x[1], reverse=True)[:3]
            }

            if cultural_analysis:
                result["cultural_analysis"] = cultural_analysis

            if specialized_analysis:
                result["specialized_analysis"] = specialized_analysis

            return result

        except Exception as e:
            print(f"Error analyzing image with CLIP: {e}")
            import traceback
            traceback.print_exc()
            return {"error": str(e)}

    def _analyze_scene_type(self, image_features: torch.Tensor) -> Dict[str, float]:
        """分析圖像特徵與各場景類型的相似度"""
        with torch.no_grad():
            # 計算場景類型文本特徵
            text_features = self.model.encode_text(self.scene_type_tokens)
            text_features = text_features / text_features.norm(dim=-1, keepdim=True)

            # 計算相似度分數
            similarity = (100 * image_features @ text_features.T).softmax(dim=-1)
            similarity = similarity.cpu().numpy()[0] if self.device == "cuda" else similarity.numpy()[0]

            # 建立場景分數字典
            scene_scores = {}
            for i, scene_type in enumerate(self.scene_type_prompts.keys()):
                scene_scores[scene_type] = float(similarity[i])

            return scene_scores

    def _analyze_lighting_condition(self, image_features: torch.Tensor) -> Dict[str, float]:
        """分析圖像的光照條件"""
        with torch.no_grad():
            # 計算光照條件文本特徵
            text_features = self.model.encode_text(self.lighting_tokens)
            text_features = text_features / text_features.norm(dim=-1, keepdim=True)

            # 計算相似度分數
            similarity = (100 * image_features @ text_features.T).softmax(dim=-1)
            similarity = similarity.cpu().numpy()[0] if self.device == "cuda" else similarity.numpy()[0]

            # 建立光照條件分數字典
            lighting_scores = {}
            for i, lighting_type in enumerate(self.lighting_condition_prompts.keys()):
                lighting_scores[lighting_type] = float(similarity[i])

            return lighting_scores

    def _analyze_cultural_scene(self, image_features: torch.Tensor, scene_type: str) -> Dict[str, Any]:
        """針對特定文化場景進行深入分析"""
        if scene_type not in self.cultural_tokens_dict:
            return {"error": f"No cultural analysis available for {scene_type}"}

        with torch.no_grad():
            # 獲取特定文化場景的文本特徵
            cultural_tokens = self.cultural_tokens_dict[scene_type]
            text_features = self.model.encode_text(cultural_tokens)
            text_features = text_features / text_features.norm(dim=-1, keepdim=True)

            # 計算相似度分數
            similarity = (100 * image_features @ text_features.T)
            similarity = similarity.cpu().numpy()[0] if self.device == "cuda" else similarity.numpy()[0]

            # 找到最匹配的文化描述
            prompts = self.cultural_scene_prompts[scene_type]
            scores = [(prompts[i], float(similarity[i])) for i in range(len(prompts))]
            scores.sort(key=lambda x: x[1], reverse=True)

            return {
                "best_description": scores[0][0],
                "confidence": scores[0][1],
                "all_matches": scores
            }

    def _analyze_specialized_scene(self, image_features: torch.Tensor, scene_type: str) -> Dict[str, Any]:
        """針對特定專門場景進行深入分析"""
        if scene_type not in self.specialized_tokens_dict:
            return {"error": f"No specialized analysis available for {scene_type}"}

        with torch.no_grad():
            # 獲取特定專門場景的文本特徵
            specialized_tokens = self.specialized_tokens_dict[scene_type]
            text_features = self.model.encode_text(specialized_tokens)
            text_features = text_features / text_features.norm(dim=-1, keepdim=True)

            # 計算相似度分數
            similarity = (100 * image_features @ text_features.T)
            similarity = similarity.cpu().numpy()[0] if self.device == "cuda" else similarity.numpy()[0]

            # 找到最匹配的專門描述
            prompts = self.specialized_scene_prompts[scene_type]
            scores = [(prompts[i], float(similarity[i])) for i in range(len(prompts))]
            scores.sort(key=lambda x: x[1], reverse=True)

            return {
                "best_description": scores[0][0],
                "confidence": scores[0][1],
                "all_matches": scores
            }

    def _analyze_viewpoint(self, image_features: torch.Tensor) -> Dict[str, float]:
        """分析圖像的拍攝視角"""
        with torch.no_grad():
            # 計算視角文本特徵
            text_features = self.model.encode_text(self.viewpoint_tokens)
            text_features = text_features / text_features.norm(dim=-1, keepdim=True)

            # 計算相似度分數
            similarity = (100 * image_features @ text_features.T).softmax(dim=-1)
            similarity = similarity.cpu().numpy()[0] if self.device == "cuda" else similarity.numpy()[0]

            # 建立視角分數字典
            viewpoint_scores = {}
            for i, viewpoint in enumerate(self.viewpoint_prompts.keys()):
                viewpoint_scores[viewpoint] = float(similarity[i])

            return viewpoint_scores

    def _analyze_object_combinations(self, image_features: torch.Tensor) -> Dict[str, float]:
        """分析圖像中的物體組合"""
        with torch.no_grad():
            # 計算物體組合文本特徵
            text_features = self.model.encode_text(self.object_combination_tokens)
            text_features = text_features / text_features.norm(dim=-1, keepdim=True)

            # 計算相似度分數
            similarity = (100 * image_features @ text_features.T).softmax(dim=-1)
            similarity = similarity.cpu().numpy()[0] if self.device == "cuda" else similarity.numpy()[0]

            # 建立物體組合分數字典
            combination_scores = {}
            for i, combination in enumerate(self.object_combination_prompts.keys()):
                combination_scores[combination] = float(similarity[i])

            return combination_scores

    def _analyze_activities(self, image_features: torch.Tensor) -> Dict[str, float]:
        """分析圖像中的活動"""
        with torch.no_grad():
            # 計算活動文本特徵
            text_features = self.model.encode_text(self.activity_tokens)
            text_features = text_features / text_features.norm(dim=-1, keepdim=True)

            # 計算相似度分數
            similarity = (100 * image_features @ text_features.T).softmax(dim=-1)
            similarity = similarity.cpu().numpy()[0] if self.device == "cuda" else similarity.numpy()[0]

            # 建立活動分數字典
            activity_scores = {}
            for i, activity in enumerate(self.activity_prompts.keys()):
                activity_scores[activity] = float(similarity[i])

            return activity_scores

    def get_image_embedding(self, image) -> np.ndarray:
        """
        獲取圖像的 CLIP 嵌入表示

        Args:
            image: PIL Image 或 numpy array

        Returns:
            np.ndarray: 圖像的 CLIP 特徵向量
        """
        # 確保圖像是 PIL 格式
        if not isinstance(image, Image.Image):
            if isinstance(image, np.ndarray):
                image = Image.fromarray(image)
            else:
                raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")

        # 預處理並編碼
        image_input = self.preprocess(image).unsqueeze(0).to(self.device)

        with torch.no_grad():
            image_features = self.model.encode_image(image_input)
            image_features = image_features / image_features.norm(dim=-1, keepdim=True)

        # 轉換為 numpy 並返回
        return image_features.cpu().numpy()[0] if self.device == "cuda" else image_features.numpy()[0]

    def text_to_embedding(self, text: str) -> np.ndarray:
        """
        將文本轉換為 CLIP 嵌入表示

        Args:
            text: 輸入文本

        Returns:
            np.ndarray: 文本的 CLIP 特徵向量
        """
        text_token = clip.tokenize([text]).to(self.device)

        with torch.no_grad():
            text_features = self.model.encode_text(text_token)
            text_features = text_features / text_features.norm(dim=-1, keepdim=True)

        return text_features.cpu().numpy()[0] if self.device == "cuda" else text_features.numpy()[0]

    def calculate_similarity(self, image, text_queries: List[str]) -> Dict[str, float]:
        """
        計算圖像與多個文本查詢的相似度

        Args:
            image: PIL Image 或 numpy array
            text_queries: 文本查詢列表

        Returns:
            Dict: 每個查詢的相似度分數
        """
        # 獲取圖像嵌入
        if isinstance(image, np.ndarray) and len(image.shape) == 1:
            # 已經是嵌入向量
            image_features = torch.tensor(image).unsqueeze(0).to(self.device)
        else:
            # 是圖像,需要提取嵌入
            image_features = torch.tensor(self.get_image_embedding(image)).unsqueeze(0).to(self.device)

        # calulate similarity
        text_tokens = clip.tokenize(text_queries).to(self.device)

        with torch.no_grad():
            text_features = self.model.encode_text(text_tokens)
            text_features = text_features / text_features.norm(dim=-1, keepdim=True)

            similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1)
            similarity = similarity.cpu().numpy()[0] if self.device == "cuda" else similarity.numpy()[0]

        # display results
        result = {}
        for i, query in enumerate(text_queries):
            result[query] = float(similarity[i])

        return result