File size: 25,668 Bytes
e83cc4c
611206a
 
 
 
 
e83cc4c
 
 
 
1487b33
611206a
 
 
 
 
1487b33
c0fe80d
e83cc4c
ba55edb
611206a
e83cc4c
4d1f920
 
ba55edb
4d1f920
 
ba55edb
 
 
 
 
 
4d1f920
 
 
 
 
 
 
ba55edb
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba55edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
611206a
4a76a7e
4d1f920
ba55edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba55edb
3172319
e83cc4c
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
ba55edb
4d1f920
 
 
 
 
 
ba55edb
4d1f920
 
 
 
ba55edb
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83cc4c
c0fe80d
3172319
c0fe80d
ba55edb
c0fe80d
3172319
c0fe80d
 
3172319
c0fe80d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1f920
3172319
 
 
 
4d1f920
 
3172319
 
c0fe80d
3172319
 
c0fe80d
 
 
ba55edb
c0fe80d
 
 
 
 
 
 
 
 
3172319
c0fe80d
3172319
 
 
 
 
c0fe80d
 
 
e83cc4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1f920
e83cc4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1f920
e83cc4c
 
 
4d1f920
e83cc4c
 
 
4d1f920
e83cc4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0fe80d
 
 
 
 
3172319
c0fe80d
3172319
c0fe80d
 
 
 
3172319
c0fe80d
3172319
 
c0fe80d
3172319
e83cc4c
 
 
 
 
 
c0fe80d
4d1f920
e83cc4c
3172319
 
c0fe80d
3172319
 
c0fe80d
 
1487b33
c0fe80d
e83cc4c
 
c0fe80d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba55edb
 
 
 
 
 
 
 
 
 
 
 
 
 
c0fe80d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1487b33
 
ba55edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
611206a
c0fe80d
611206a
ba55edb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import re
import os
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
from typing import Dict, List, Any, Optional, Tuple
import cv2
from PIL import Image
import tempfile
import uuid
import spaces

from detection_model import DetectionModel
from color_mapper import ColorMapper
from evaluation_metrics import EvaluationMetrics
from style import Style
from image_processor import ImageProcessor
from video_processor import VideoProcessor
from llm_enhancer import LLMEnhancer
from ui_manager import UIManager

# Initialize Processors with LLM support
image_processor = None
video_processor = None
ui_manager = None

def initialize_processors():
    """
    Initialize the image and video processors with LLM support.
    
    Returns:
        bool: True if initialization was successful, False otherwise
    """
    global image_processor, video_processor

    try:
        print("Attempting to initialize ImageProcessor with LLM support...")
        image_processor = ImageProcessor(use_llm=True, llm_model_path="meta-llama/Llama-3.2-3B-Instruct")
        print("ImageProcessor initialized successfully with LLM")

        # 檢查狀態
        if hasattr(image_processor, 'scene_analyzer'):
            if image_processor.scene_analyzer is not None:
                print(f"scene_analyzer initialized: {type(image_processor.scene_analyzer)}")
                if hasattr(image_processor.scene_analyzer, 'use_llm'):
                    print(f"scene_analyzer.use_llm available: {image_processor.scene_analyzer.use_llm}")
            else:
                print("WARNING: scene_analyzer is None after initialization")
        else:
            print("WARNING: scene_analyzer attribute not found in image_processor")

        video_processor = VideoProcessor(image_processor)
        print("VideoProcessor initialized successfully")
        return True

    except Exception as e:
        print(f"Error initializing processors with LLM: {e}")
        import traceback
        traceback.print_exc()

        # Create fallback processor without LLM
        try:
            print("Attempting fallback initialization without LLM...")
            image_processor = ImageProcessor(use_llm=False, enable_places365=False)
            video_processor = VideoProcessor(image_processor)
            print("Fallback processors initialized successfully without LLM and Places365")
            return True

        except Exception as fallback_error:
            print(f"Fatal error: Cannot initialize processors: {fallback_error}")
            import traceback
            traceback.print_exc()
            image_processor = None
            video_processor = None
            return False

def initialize_ui_manager():
    """
    Initialize the UI manager and set up references to processors.
    
    Returns:
        UIManager: Initialized UI manager instance
    """
    global ui_manager, image_processor
    
    ui_manager = UIManager()
    
    # Set image processor reference for dynamic class retrieval
    if image_processor:
        ui_manager.set_image_processor(image_processor)
    
    return ui_manager

@spaces.GPU(duration=180)
def handle_image_upload(image, model_name, confidence_threshold, filter_classes=None, use_llm=True, enable_landmark=True):
    """
    Processes a single uploaded image.
    
    Args:
        image: PIL Image object
        model_name: Name of the YOLO model to use
        confidence_threshold: Confidence threshold for detections
        filter_classes: List of class names/IDs to filter
        use_llm: Whether to use LLM for enhanced descriptions
        enable_landmark: Whether to enable landmark detection
        
    Returns:
        Tuple: (result_image, result_text, formatted_stats, plot_figure, 
                scene_description_html, original_desc_html, activities_list_data, 
                safety_data, zones, lighting)
    """
    # Enhanced safety check for image_processor
    if image_processor is None:
        error_msg = "Image processor is not initialized. Please restart the application or check system dependencies."
        print(f"ERROR: {error_msg}")

        # Create error plot
        fig, ax = plt.subplots(figsize=(8, 6))
        ax.text(0.5, 0.5, "Initialization Error\nProcessor Not Available",
                color="red", ha="center", va="center", fontsize=14, fontweight="bold")
        ax.axis('off')

        return (None, error_msg, {}, fig, f"<div style='color: red; font-weight: bold;'>Error: {error_msg}</div>",
                "<div style='color: red;'>Error: System not initialized</div>",
                [["System Error"]], [["System Error"]], {}, {"time_of_day": "error", "confidence": 0})

    # Additional safety check for processor attributes
    if not hasattr(image_processor, 'use_llm'):
        error_msg = "Image processor is corrupted. Missing required attributes."
        print(f"ERROR: {error_msg}")

        fig, ax = plt.subplots(figsize=(8, 6))
        ax.text(0.5, 0.5, "Processor Error\nCorrupted State",
                color="red", ha="center", va="center", fontsize=14, fontweight="bold")
        ax.axis('off')

        return (None, error_msg, {}, fig, f"<div style='color: red; font-weight: bold;'>Error: {error_msg}</div>",
                "<div style='color: red;'>Error: Processor corrupted</div>",
                [["Processor Error"]], [["Processor Error"]], {}, {"time_of_day": "error", "confidence": 0})

    print(f"DIAGNOSTIC: Image upload handled with enable_landmark={enable_landmark}, use_llm={use_llm}")
    print(f"Processing image with model: {model_name}, confidence: {confidence_threshold}, use_llm: {use_llm}, enable_landmark: {enable_landmark}")
    
    try:
        image_processor.use_llm = use_llm

        # 確保 scene_analyzer 不是 None
        if hasattr(image_processor, 'scene_analyzer') and image_processor.scene_analyzer is not None:
            if hasattr(image_processor.scene_analyzer, 'use_llm'):
                image_processor.scene_analyzer.use_llm = use_llm
                print(f"Updated existing scene_analyzer use_llm setting to: {use_llm}")

            # 檢查並設置 landmark detection
            if hasattr(image_processor.scene_analyzer, 'use_landmark_detection'):
                # 設置所有相關標記
                image_processor.scene_analyzer.use_landmark_detection = enable_landmark
                image_processor.scene_analyzer.enable_landmark = enable_landmark

                # 確保處理器也設置了這選項(檢測地標用)
                image_processor.enable_landmark = enable_landmark

                # 檢查並設置更深層次的組件
                if hasattr(image_processor.scene_analyzer, 'scene_describer') and image_processor.scene_analyzer.scene_describer is not None:
                    image_processor.scene_analyzer.scene_describer.enable_landmark = enable_landmark

                # 檢查並設置CLIP Analyzer
                if hasattr(image_processor.scene_analyzer, 'clip_analyzer') and image_processor.scene_analyzer.clip_analyzer is not None:
                    if hasattr(image_processor.scene_analyzer.clip_analyzer, 'enable_landmark'):
                        image_processor.scene_analyzer.clip_analyzer.enable_landmark = enable_landmark

                # 檢查並設置LLM方面
                if hasattr(image_processor.scene_analyzer, 'llm_enhancer') and image_processor.scene_analyzer.llm_enhancer is not None:
                    if hasattr(image_processor.scene_analyzer.llm_enhancer, 'enable_landmark'):
                        image_processor.scene_analyzer.llm_enhancer.enable_landmark = enable_landmark
                        print(f"Updated LLM enhancer enable_landmark to: {enable_landmark}")

                print(f"Updated all landmark detection settings to: {enable_landmark}")
        else:
            print("WARNING: scene_analyzer is None or not available")
            if hasattr(image_processor, 'enable_landmark'):
                image_processor.enable_landmark = enable_landmark

                # 設置更深層次的組別
                if hasattr(image_processor.scene_analyzer, 'scene_describer'):
                    image_processor.scene_analyzer.scene_describer.enable_landmark = enable_landmark

                # 設置CLIP分析器上的標記
                if hasattr(image_processor.scene_analyzer, 'clip_analyzer'):
                    if hasattr(image_processor.scene_analyzer.clip_analyzer, 'enable_landmark'):
                        image_processor.scene_analyzer.clip_analyzer.enable_landmark = enable_landmark

                # 如果有LLM增強器,也設置它
                if hasattr(image_processor.scene_analyzer, 'llm_enhancer'):
                    image_processor.scene_analyzer.llm_enhancer.enable_landmark = enable_landmark
                    print(f"Updated LLM enhancer enable_landmark to: {enable_landmark}")

                print(f"Updated all landmark detection settings to: {enable_landmark}")

        class_ids_to_filter = None
        if filter_classes:
            class_ids_to_filter = []
            available_classes_dict = dict(ui_manager.get_all_classes())
            name_to_id = {name: id for id, name in available_classes_dict.items()}
            for class_str in filter_classes:
                class_name_or_id = class_str.split(":")[0].strip()
                class_id = -1
                try:
                    class_id = int(class_name_or_id)
                    if class_id not in available_classes_dict:
                        class_id = -1
                except ValueError:
                    if class_name_or_id in name_to_id:
                        class_id = name_to_id[class_name_or_id]
                    elif class_str in name_to_id: # Check full string "id: name"
                        class_id = name_to_id[class_str]

                if class_id != -1:
                    class_ids_to_filter.append(class_id)
                else:
                    print(f"Warning: Could not parse class filter: {class_str}")
            print(f"Filtering image results for class IDs: {class_ids_to_filter}")

        # Call the existing image processing logic
        print(f"DEBUG: app.py 傳遞 enable_landmark={enable_landmark} 到 process_image")
        result_image, result_text, stats = image_processor.process_image(
            image,
            model_name,
            confidence_threshold,
            class_ids_to_filter,
            enable_landmark
        )

        # Format stats for JSON display
        formatted_stats = image_processor.format_json_for_display(stats)

        # Prepare visualization data for the plot
        plot_figure = None
        if stats and "class_statistics" in stats and stats["class_statistics"]:
            available_classes_dict = dict(ui_manager.get_all_classes())
            viz_data = image_processor.prepare_visualization_data(stats, available_classes_dict)
            if "error" not in viz_data:
                 plot_figure = EvaluationMetrics.create_enhanced_stats_plot(viz_data)
            else:
                 fig, ax = plt.subplots(figsize=(8, 6))
                 ax.text(0.5, 0.5, viz_data["error"], ha='center', va='center', fontsize=12)
                 ax.axis('off')
                 plot_figure = fig
        else:
            fig, ax = plt.subplots(figsize=(8, 6))
            ax.text(0.5, 0.5, "No detection data for plot", ha='center', va='center', fontsize=12)
            ax.axis('off')
            plot_figure = fig

        # Extract scene analysis info
        scene_analysis = stats.get("scene_analysis", {})
        scene_desc = scene_analysis.get("description", "Scene analysis requires detected objects.")
        # Ensure scene_desc is a string before adding HTML
        if not isinstance(scene_desc, str):
            scene_desc = str(scene_desc)

        def clean_description(desc):
            if not desc:
                return ""

            # 先過濾問答格式
            if "Questions:" in desc:
                desc = desc.split("Questions:")[0].strip()
            if "Answers:" in desc:
                desc = desc.split("Answers:")[0].strip()

            # 然後按行過濾代碼和其他非敘述內容
            lines = desc.split('\n')
            clean_lines = []
            skip_block = False

            for line in lines:
                # 檢測問題格式
                if re.match(r'^\d+\.\s+(What|How|Why|When|Where|Who|The)', line):
                    continue

                # 檢查需要跳過的行
                if line.strip().startswith(':param') or line.strip().startswith('"""'):
                    continue
                if line.strip().startswith("Exercise") or "class SceneDescriptionSystem" in line:
                    skip_block = True
                    continue
                if ('def generate_scene_description' in line or
                    'def enhance_scene_descriptions' in line or
                    'def __init__' in line):
                    skip_block = True
                    continue
                if line.strip().startswith('#TEST'):
                    skip_block = True
                    continue

                if skip_block and line.strip() == "":
                    skip_block = False

                # 如果不需要跳過
                if not skip_block:
                    clean_lines.append(line)

            cleaned_text = '\n'.join(clean_lines)

            # 如果清理後為空,返回原始描述的第一段作為保險
            if not cleaned_text.strip():
                paragraphs = [p.strip() for p in desc.split('\n\n') if p.strip()]
                if paragraphs:
                    return paragraphs[0]
                return desc

            return cleaned_text

        # 獲取和處理場景描述
        scene_analysis = stats.get("scene_analysis", {})
        print("Processing scene_analysis:", scene_analysis.keys())

        # 獲取原始描述
        scene_desc = scene_analysis.get("description", "Scene analysis requires detected objects.")
        if not isinstance(scene_desc, str):
            scene_desc = str(scene_desc)

        print(f"Original scene description (first 50 chars): {scene_desc[:50]}...")

        # determine original description
        clean_scene_desc = clean_description(scene_desc)
        print(f"Cleaned scene description (first 50 chars): {clean_scene_desc[:50]}...")

        if not clean_scene_desc.strip():
            clean_scene_desc = scene_desc

        scene_desc_html = f"<div>{clean_scene_desc}</div>"

        # 獲取LLM增強描述並且確保設置默認值為空字符串而非 None,不然會有None type Error
        enhanced_description = scene_analysis.get("enhanced_description", "")
        if enhanced_description is None:
            enhanced_description = ""

        if not enhanced_description or not enhanced_description.strip():
            print("WARNING: LLM enhanced description is empty!")

        # bedge & label
        llm_badge = ""
        description_to_show = ""

        # 在 Original Scene Analysis 折疊區顯示原始的描述
        if use_llm and enhanced_description:
            llm_badge = '<span style="display:inline-block; margin-left:8px; padding:3px 10px; border-radius:12px; background: linear-gradient(90deg, #38b2ac, #4299e1); color:white; font-size:0.7rem; font-weight:bold; box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); border: 1px solid rgba(255, 255, 255, 0.2);">LLM Enhanced</span>'
            description_to_show = enhanced_description

        else:
            llm_badge = '<span style="display:inline-block; margin-left:8px; padding:3px 10px; border-radius:12px; background-color:#718096; color:white; font-size:0.7rem; font-weight:bold;">Basic</span>'
            description_to_show = clean_scene_desc

        # 使用LLM敘述時會有徽章標籤在標題上
        scene_description_html = f'''
        <div>
            <div class="section-heading" style="font-size:1.2rem; margin-top:15px;">Scene Description {llm_badge}
                <span style="font-size:0.8rem; color:#666; font-weight:normal; display:block; margin-top:2px;">
                    {('(Enhanced by AI language model)' if use_llm and enhanced_description else '(Based on object detection)')}
                </span>
            </div>
            <div style="padding:15px; background-color:#ffffff; border-radius:8px; border:1px solid #e2e8f0; margin-bottom:20px; box-shadow:0 1px 3px rgba(0,0,0,0.05);">
                {description_to_show}
            </div>
        </div>
        '''

        # 原始描述只在使用 LLM 且有增強描述時在折疊區顯示
        original_desc_visibility = "block" if use_llm and enhanced_description else "none"
        original_desc_html = f'''
        <div id="original_scene_analysis_accordion" style="display: {original_desc_visibility};">
            <div style="padding:15px; background-color:#f0f0f0; border-radius:8px; border:1px solid #e2e8f0;">
                {clean_scene_desc}
            </div>
        </div>
        '''

        # Prepare activities list
        activities_list = scene_analysis.get("possible_activities", [])
        if not activities_list:
            activities_list_data = [["No specific activities inferred"]] # Data for Dataframe
        else:
            activities_list_data = [[activity] for activity in activities_list]

        # Prepare safety concerns list
        safety_concerns_list = scene_analysis.get("safety_concerns", [])
        if not safety_concerns_list:
            safety_data = [["No safety concerns detected"]] # Data for Dataframe
        else:
            safety_data = [[concern] for concern in safety_concerns_list]

        zones = scene_analysis.get("functional_zones", {})
        lighting = scene_analysis.get("lighting_conditions", {"time_of_day": "unknown", "confidence": 0})

        # 如果描述為空,記錄警告
        if not clean_scene_desc.strip():
            print("WARNING: Scene description is empty after cleaning!")
        if not enhanced_description.strip():
            print("WARNING: LLM enhanced description is empty!")

        return (result_image, result_text, formatted_stats, plot_figure,
            scene_description_html, original_desc_html,
            activities_list_data, safety_data, zones, lighting)

    except Exception as e:
        print(f"Error in handle_image_upload: {e}")
        import traceback
        error_msg = f"Error processing image: {str(e)}\n{traceback.format_exc()}"
        fig, ax = plt.subplots()
        ax.text(0.5, 0.5, "Processing Error", color="red", ha="center", va="center")
        ax.axis('off')
        # Ensure return structure matches outputs even on error
        return (None, error_msg, {}, fig, f"<div>Error: {str(e)}</div>", "Error",
            [["Error"]], [["Error"]], {}, {"time_of_day": "error", "confidence": 0})

def download_video_from_url(video_url, max_duration_minutes=10):
    """
    Downloads a video from a YouTube URL and returns the local path to the downloaded file.

    Args:
        video_url (str): URL of the YouTube video to download
        max_duration_minutes (int): Maximum allowed video duration in minutes

    Returns:
        tuple: (Path to the downloaded video file or None, Error message or None)
    """
    try:
        # Create a temporary directory to store the video
        temp_dir = tempfile.gettempdir()
        output_filename = f"downloaded_{uuid.uuid4().hex}.mp4"
        output_path = os.path.join(temp_dir, output_filename)

        # Check if it's a YouTube URL
        if "youtube.com" in video_url or "youtu.be" in video_url:
            # Import yt-dlp here to avoid dependency if not needed
            import yt_dlp

            # Setup yt-dlp options
            ydl_opts = {
                'format': 'best[ext=mp4]/best',  # Best quality MP4 or best available format
                'outtmpl': output_path,
                'noplaylist': True,
                'quiet': False,  # Set to True to reduce output
                'no_warnings': False,
            }

            # First extract info to check duration
            with yt_dlp.YoutubeDL(ydl_opts) as ydl:
                print(f"Extracting info from YouTube URL: {video_url}")
                info_dict = ydl.extract_info(video_url, download=False)

                # Check if video exists
                if not info_dict:
                    return None, "Could not retrieve video information. Please check the URL."

                video_title = info_dict.get('title', 'Unknown Title')
                duration = info_dict.get('duration', 0)

                print(f"Video title: {video_title}")
                print(f"Video duration: {duration} seconds")

                # Check video duration
                if duration > max_duration_minutes * 60:
                    return None, f"Video is too long ({duration} seconds). Maximum duration is {max_duration_minutes} minutes."

                # Download the video
                print(f"Downloading YouTube video: {video_title}")
                ydl.download([video_url])

            # Verify the file exists and has content
            if not os.path.exists(output_path) or os.path.getsize(output_path) == 0:
                return None, "Download failed: Empty or missing file."

            print(f"Successfully downloaded video to: {output_path}")
            return output_path, None
        else:
            return None, "Only YouTube URLs are supported at this time. Please enter a valid YouTube URL."

    except Exception as e:
        import traceback
        error_details = traceback.format_exc()
        print(f"Error downloading video: {e}\n{error_details}")
        return None, f"Error downloading video: {str(e)}"


@spaces.GPU
def handle_video_upload(video_input, video_url, input_type, model_name, confidence_threshold, process_interval):
    """
    Handles video upload or URL input and calls the VideoProcessor.
    
    Args:
        video_input: Uploaded video file
        video_url: Video URL (if using URL input)
        input_type: Type of input ("upload" or "url")
        model_name: Name of the YOLO model to use
        confidence_threshold: Confidence threshold for detections
        process_interval: Frame processing interval
        
    Returns:
        Tuple: (output_video_path, summary_html, formatted_stats)
    """
    print(f"Received video request: input_type={input_type}")
    video_path = None

    # Handle based on input type
    if input_type == "upload" and video_input:
        print(f"Processing uploaded video file")
        video_path = video_input
    elif input_type == "url" and video_url:
        print(f"Processing video from URL: {video_url}")
        # Download video from URL
        video_path, error_message = download_video_from_url(video_url)
        if error_message:
            error_html = f"<div class='video-summary-content-wrapper'><pre>{error_message}</pre></div>"
            return None, error_html, {"error": error_message}
    else:
        print("No valid video input provided.")
        return None, "<div class='video-summary-content-wrapper'><pre>Please upload a video file or provide a valid video URL.</pre></div>", {}

    print(f"Starting video processing with: model={model_name}, confidence={confidence_threshold}, interval={process_interval}")
    try:
        # Call the VideoProcessor method
        output_video_path, summary_text, stats_dict = video_processor.process_video_file(
            video_path=video_path,
            model_name=model_name,
            confidence_threshold=confidence_threshold,
            process_interval=int(process_interval) # Ensure interval is int
        )
        print(f"Video processing function returned: path={output_video_path}, summary length={len(summary_text)}")

        # Wrap processing summary in HTML tags for consistent styling with scene understanding page
        summary_html = f"<div class='video-summary-content-wrapper'><pre>{summary_text}</pre></div>"

        # Format statistics for better display
        formatted_stats = {}
        if stats_dict and isinstance(stats_dict, dict):
            formatted_stats = stats_dict

        return output_video_path, summary_html, formatted_stats

    except Exception as e:
        print(f"Error in handle_video_upload: {e}")
        import traceback
        error_msg = f"Error processing video: {str(e)}\n{traceback.format_exc()}"
        error_html = f"<div class='video-summary-content-wrapper'><pre>{error_msg}</pre></div>"
        return None, error_html, {"error": str(e)}


def main():
    """
    Main function to initialize processors and launch the Gradio interface.
    """
    global ui_manager
    
    # Initialize processors
    print("Initializing processors...")
    initialization_success = initialize_processors()
    if not initialization_success:
        print("WARNING: Failed to initialize processors. Application may not function correctly.")
        return
    
    # Initialize UI manager
    print("Initializing UI manager...")
    ui_manager = initialize_ui_manager()
    
    # Create and launch the Gradio interface
    print("Creating Gradio interface...")
    demo_interface = ui_manager.create_interface(
        handle_image_upload_fn=handle_image_upload,
        handle_video_upload_fn=handle_video_upload,
        download_video_from_url_fn=download_video_from_url
    )
    
    print("Launching application...")
    demo_interface.launch(debug=True)


if __name__ == "__main__":
    main()