Spaces:
Running
on
Zero
Running
on
Zero
File size: 60,294 Bytes
3172319 d823aa6 3172319 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 |
import os
import numpy as np
from typing import Dict, List, Tuple, Any, Optional
from scene_type import SCENE_TYPES
from enhance_scene_describer import EnhancedSceneDescriber
class SpatialAnalyzer:
"""
Analyzes spatial relationships between objects in an image.
Handles region assignment, object positioning, and functional zone identification.
"""
def __init__(self, class_names: Dict[int, str] = None, object_categories=None):
"""Initialize the spatial analyzer with image regions"""
# Define regions of the image (3x3 grid)
self.regions = {
"top_left": (0, 0, 1/3, 1/3),
"top_center": (1/3, 0, 2/3, 1/3),
"top_right": (2/3, 0, 1, 1/3),
"middle_left": (0, 1/3, 1/3, 2/3),
"middle_center": (1/3, 1/3, 2/3, 2/3),
"middle_right": (2/3, 1/3, 1, 2/3),
"bottom_left": (0, 2/3, 1/3, 1),
"bottom_center": (1/3, 2/3, 2/3, 1),
"bottom_right": (2/3, 2/3, 1, 1)
}
self.class_names = class_names
self.OBJECT_CATEGORIES = object_categories or {}
self.enhance_descriptor = EnhancedSceneDescriber(scene_types=SCENE_TYPES)
# Distances thresholds for proximity analysis (normalized)
self.proximity_threshold = 0.2
def _determine_region(self, x: float, y: float) -> str:
"""
Determine which region a point falls into.
Args:
x: Normalized x-coordinate (0-1)
y: Normalized y-coordinate (0-1)
Returns:
Region name
"""
for region_name, (x1, y1, x2, y2) in self.regions.items():
if x1 <= x < x2 and y1 <= y < y2:
return region_name
return "unknown"
def _analyze_regions(self, detected_objects: List[Dict]) -> Dict:
"""
Analyze object distribution across image regions.
Args:
detected_objects: List of detected objects with position information
Returns:
Dictionary with region analysis
"""
# Count objects in each region
region_counts = {region: 0 for region in self.regions.keys()}
region_objects = {region: [] for region in self.regions.keys()}
for obj in detected_objects:
region = obj["region"]
if region in region_counts:
region_counts[region] += 1
region_objects[region].append({
"class_id": obj["class_id"],
"class_name": obj["class_name"]
})
# Determine main focus regions (top 1-2 regions by object count)
sorted_regions = sorted(region_counts.items(), key=lambda x: x[1], reverse=True)
main_regions = [region for region, count in sorted_regions if count > 0][:2]
return {
"counts": region_counts,
"main_focus": main_regions,
"objects_by_region": region_objects
}
def _extract_detected_objects(self, detection_result: Any, confidence_threshold: float = 0.25) -> List[Dict]:
"""
Extract detected objects from detection result with position information.
Args:
detection_result: Detection result from YOLOv8
confidence_threshold: Minimum confidence threshold
Returns:
List of dictionaries with detected object information
"""
boxes = detection_result.boxes.xyxy.cpu().numpy()
classes = detection_result.boxes.cls.cpu().numpy().astype(int)
confidences = detection_result.boxes.conf.cpu().numpy()
# Image dimensions
img_height, img_width = detection_result.orig_shape[:2]
detected_objects = []
for box, class_id, confidence in zip(boxes, classes, confidences):
# Skip objects with confidence below threshold
if confidence < confidence_threshold:
continue
x1, y1, x2, y2 = box
width = x2 - x1
height = y2 - y1
# Center point
center_x = (x1 + x2) / 2
center_y = (y1 + y2) / 2
# Normalized positions (0-1)
norm_x = center_x / img_width
norm_y = center_y / img_height
norm_width = width / img_width
norm_height = height / img_height
# Area calculation
area = width * height
norm_area = area / (img_width * img_height)
# Region determination
object_region = self._determine_region(norm_x, norm_y)
detected_objects.append({
"class_id": int(class_id),
"class_name": self.class_names[int(class_id)],
"confidence": float(confidence),
"box": [float(x1), float(y1), float(x2), float(y2)],
"center": [float(center_x), float(center_y)],
"normalized_center": [float(norm_x), float(norm_y)],
"size": [float(width), float(height)],
"normalized_size": [float(norm_width), float(norm_height)],
"area": float(area),
"normalized_area": float(norm_area),
"region": object_region
})
return detected_objects
def _detect_scene_viewpoint(self, detected_objects: List[Dict]) -> Dict:
"""
檢測場景視角並識別特殊場景模式。
Args:
detected_objects: 檢測到的物體列表
Returns:
Dict: 包含視角和場景模式信息的字典
"""
if not detected_objects:
return {"viewpoint": "eye_level", "patterns": []}
# 從物體位置中提取信息
patterns = []
# 檢測行人位置模式
pedestrian_objs = [obj for obj in detected_objects if obj["class_id"] == 0]
# 檢查是否有足夠的行人來識別模式
if len(pedestrian_objs) >= 4:
pedestrian_positions = [obj["normalized_center"] for obj in pedestrian_objs]
# 檢測十字交叉模式
if self._detect_cross_pattern(pedestrian_positions):
patterns.append("crosswalk_intersection")
# 檢測多方向行人流
directions = self._analyze_movement_directions(pedestrian_positions)
if len(directions) >= 2:
patterns.append("multi_directional_movement")
# 檢查物體的大小一致性 - 在空中俯視圖中,物體大小通常更一致
if len(detected_objects) >= 5:
sizes = [obj.get("normalized_area", 0) for obj in detected_objects]
size_variance = np.var(sizes) / (np.mean(sizes) ** 2) # 標準化變異數,不會受到平均值影響
if size_variance < 0.3: # 低變異表示大小一致
patterns.append("consistent_object_size")
# 基本視角檢測
viewpoint = self.enhance_descriptor._detect_viewpoint(detected_objects)
# 根據檢測到的模式增強視角判斷
if "crosswalk_intersection" in patterns and viewpoint != "aerial":
# 如果檢測到斑馬線交叉但視角判斷不是空中視角,優先採用模式判斷
viewpoint = "aerial"
return {
"viewpoint": viewpoint,
"patterns": patterns
}
def _detect_cross_pattern(self, positions):
"""
檢測位置中的十字交叉模式
Args:
positions: 位置列表 [[x1, y1], [x2, y2], ...]
Returns:
bool: 是否檢測到十字交叉模式
"""
if len(positions) < 8: # 需要足夠多的點
return False
# 提取 x 和 y 坐標
x_coords = [pos[0] for pos in positions]
y_coords = [pos[1] for pos in positions]
# 檢測 x 和 y 方向的聚類
x_clusters = []
y_clusters = []
# 簡化的聚類分析
x_mean = np.mean(x_coords)
y_mean = np.mean(y_coords)
# 計算在中心線附近的點
near_x_center = sum(1 for x in x_coords if abs(x - x_mean) < 0.1)
near_y_center = sum(1 for y in y_coords if abs(y - y_mean) < 0.1)
# 如果有足夠的點在中心線附近,可能是十字交叉
return near_x_center >= 3 and near_y_center >= 3
def _analyze_movement_directions(self, positions):
"""
分析位置中的移動方向
Args:
positions: 位置列表 [[x1, y1], [x2, y2], ...]
Returns:
list: 檢測到的主要方向
"""
if len(positions) < 6:
return []
# extract x 和 y 坐標
x_coords = [pos[0] for pos in positions]
y_coords = [pos[1] for pos in positions]
directions = []
# horizontal move (left --> right)
x_std = np.std(x_coords)
x_range = max(x_coords) - min(x_coords)
# vertical move(up --> down)
y_std = np.std(y_coords)
y_range = max(y_coords) - min(y_coords)
# 足夠大的範圍表示該方向有運動
if x_range > 0.4:
directions.append("horizontal")
if y_range > 0.4:
directions.append("vertical")
return directions
def _identify_functional_zones(self, detected_objects: List[Dict], scene_type: str) -> Dict:
"""
Identify functional zones within the scene with improved detection for different viewpoints
and cultural contexts.
Args:
detected_objects: List of detected objects
scene_type: Identified scene type
Returns:
Dictionary of functional zones with their descriptions
"""
# Group objects by category and region
category_regions = {}
for obj in detected_objects:
# Find object category
category = "other"
for cat_name, cat_ids in self.OBJECT_CATEGORIES.items():
if obj["class_id"] in cat_ids:
category = cat_name
break
# Add to category-region mapping
if category not in category_regions:
category_regions[category] = {}
region = obj["region"]
if region not in category_regions[category]:
category_regions[category][region] = []
category_regions[category][region].append(obj)
# Identify zones based on object groupings
zones = {}
# Detect viewpoint to adjust zone identification strategy
viewpoint = self._detect_scene_viewpoint(detected_objects)
# Choose appropriate zone identification strategy based on scene type and viewpoint
if scene_type in ["living_room", "bedroom", "dining_area", "kitchen", "office_workspace", "meeting_room"]:
# Indoor scenes
zones.update(self._identify_indoor_zones(category_regions, detected_objects, scene_type))
elif scene_type in ["city_street", "parking_lot", "park_area"]:
# Outdoor general scenes
zones.update(self._identify_outdoor_general_zones(category_regions, detected_objects, scene_type))
elif "aerial" in scene_type or viewpoint == "aerial":
# Aerial viewpoint scenes
zones.update(self._identify_aerial_view_zones(category_regions, detected_objects, scene_type))
elif "asian" in scene_type:
# Asian cultural context scenes
zones.update(self._identify_asian_cultural_zones(category_regions, detected_objects, scene_type))
elif scene_type == "urban_intersection":
# Specific urban intersection logic
zones.update(self._identify_intersection_zones(category_regions, detected_objects, viewpoint))
elif scene_type == "financial_district":
# Financial district specific logic
zones.update(self._identify_financial_district_zones(category_regions, detected_objects))
elif scene_type == "upscale_dining":
# Upscale dining specific logic
zones.update(self._identify_upscale_dining_zones(category_regions, detected_objects))
else:
# Default zone identification for other scene types
zones.update(self._identify_default_zones(category_regions, detected_objects))
# If no zones were identified, try the default approach
if not zones:
zones.update(self._identify_default_zones(category_regions, detected_objects))
return zones
def _identify_indoor_zones(self, category_regions: Dict, detected_objects: List[Dict], scene_type: str) -> Dict:
"""
Identify functional zones for indoor scenes.
Args:
category_regions: Objects grouped by category and region
detected_objects: List of detected objects
scene_type: Specific indoor scene type
Returns:
Dict: Indoor functional zones
"""
zones = {}
# Seating/social zone
if "furniture" in category_regions:
furniture_regions = category_regions["furniture"]
main_furniture_region = max(furniture_regions.items(),
key=lambda x: len(x[1]),
default=(None, []))
if main_furniture_region[0] is not None and len(main_furniture_region[1]) >= 2:
zone_objects = [obj["class_name"] for obj in main_furniture_region[1]]
zones["social_zone"] = {
"region": main_furniture_region[0],
"objects": zone_objects,
"description": f"Social or seating area with {', '.join(zone_objects)}"
}
# Entertainment zone
if "electronics" in category_regions:
electronics_items = []
for region_objects in category_regions["electronics"].values():
electronics_items.extend([obj["class_name"] for obj in region_objects])
if electronics_items:
zones["entertainment_zone"] = {
"region": self._find_main_region(category_regions.get("electronics", {})),
"objects": electronics_items,
"description": f"Entertainment or media area with {', '.join(electronics_items)}"
}
# Dining/food zone
food_zone_categories = ["kitchen_items", "food"]
food_items = []
food_regions = {}
for category in food_zone_categories:
if category in category_regions:
for region, objects in category_regions[category].items():
if region not in food_regions:
food_regions[region] = []
food_regions[region].extend(objects)
food_items.extend([obj["class_name"] for obj in objects])
if food_items:
main_food_region = max(food_regions.items(),
key=lambda x: len(x[1]),
default=(None, []))
if main_food_region[0] is not None:
zones["dining_zone"] = {
"region": main_food_region[0],
"objects": list(set(food_items)),
"description": f"Dining or food preparation area with {', '.join(list(set(food_items))[:3])}"
}
# Work/study zone - enhanced to detect even when scene_type is not explicitly office
work_items = []
work_regions = {}
for obj in detected_objects:
if obj["class_id"] in [56, 60, 63, 64, 66, 73]: # chair, table, laptop, mouse, keyboard, book
region = obj["region"]
if region not in work_regions:
work_regions[region] = []
work_regions[region].append(obj)
work_items.append(obj["class_name"])
# Check for laptop and table/chair combinations that suggest a workspace
has_laptop = any(obj["class_id"] == 63 for obj in detected_objects)
has_keyboard = any(obj["class_id"] == 66 for obj in detected_objects)
has_table = any(obj["class_id"] == 60 for obj in detected_objects)
has_chair = any(obj["class_id"] == 56 for obj in detected_objects)
# If we have electronics with furniture in the same region, likely a workspace
workspace_detected = (has_laptop or has_keyboard) and (has_table or has_chair)
if (workspace_detected or scene_type in ["office_workspace", "meeting_room"]) and work_items:
main_work_region = max(work_regions.items(),
key=lambda x: len(x[1]),
default=(None, []))
if main_work_region[0] is not None:
zones["workspace_zone"] = {
"region": main_work_region[0],
"objects": list(set(work_items)),
"description": f"Work or study area with {', '.join(list(set(work_items))[:3])}"
}
# Bedroom-specific zones
if scene_type == "bedroom":
bed_objects = [obj for obj in detected_objects if obj["class_id"] == 59] # Bed
if bed_objects:
bed_region = bed_objects[0]["region"]
zones["sleeping_zone"] = {
"region": bed_region,
"objects": ["bed"],
"description": "Sleeping area with bed"
}
# Kitchen-specific zones
if scene_type == "kitchen":
# Look for appliances (refrigerator, oven, microwave, sink)
appliance_ids = [68, 69, 71, 72] # microwave, oven, sink, refrigerator
appliance_objects = [obj for obj in detected_objects if obj["class_id"] in appliance_ids]
if appliance_objects:
appliance_regions = {}
for obj in appliance_objects:
region = obj["region"]
if region not in appliance_regions:
appliance_regions[region] = []
appliance_regions[region].append(obj)
if appliance_regions:
main_appliance_region = max(appliance_regions.items(),
key=lambda x: len(x[1]),
default=(None, []))
if main_appliance_region[0] is not None:
appliance_names = [obj["class_name"] for obj in main_appliance_region[1]]
zones["kitchen_appliance_zone"] = {
"region": main_appliance_region[0],
"objects": appliance_names,
"description": f"Kitchen appliance area with {', '.join(appliance_names)}"
}
return zones
def _identify_intersection_zones(self, category_regions: Dict, detected_objects: List[Dict], viewpoint: str) -> Dict:
"""
Identify functional zones for urban intersections with enhanced spatial awareness.
Args:
category_regions: Objects grouped by category and region
detected_objects: List of detected objects
viewpoint: Detected viewpoint
Returns:
Dict: Refined intersection functional zones
"""
zones = {}
# Get pedestrians, vehicles and traffic signals
pedestrian_objs = [obj for obj in detected_objects if obj["class_id"] == 0]
vehicle_objs = [obj for obj in detected_objects if obj["class_id"] in [1, 2, 3, 5, 7]] # bicycle, car, motorcycle, bus, truck
traffic_light_objs = [obj for obj in detected_objects if obj["class_id"] == 9]
# Create distribution maps for better spatial understanding
regions_distribution = self._create_distribution_map(detected_objects)
# Analyze pedestrian crossing patterns
crossing_zones = self._analyze_crossing_patterns(pedestrian_objs, traffic_light_objs, regions_distribution)
zones.update(crossing_zones)
# Analyze vehicle traffic zones with directional awareness
traffic_zones = self._analyze_traffic_zones(vehicle_objs, regions_distribution)
zones.update(traffic_zones)
# Identify traffic control zones based on signal placement
if traffic_light_objs:
# Group traffic lights by region for better organization
signal_regions = {}
for obj in traffic_light_objs:
region = obj["region"]
if region not in signal_regions:
signal_regions[region] = []
signal_regions[region].append(obj)
# Create traffic control zones for each region with signals
for idx, (region, signals) in enumerate(signal_regions.items()):
# Check if this region has a directional name
direction = self._get_directional_description(region)
zones[f"traffic_control_zone_{idx+1}"] = {
"region": region,
"objects": ["traffic light"] * len(signals),
"description": f"Traffic control area with {len(signals)} traffic signals" +
(f" in {direction} area" if direction else "")
}
return zones
def _analyze_crossing_patterns(self, pedestrians: List[Dict], traffic_lights: List[Dict],
region_distribution: Dict) -> Dict:
"""
Analyze pedestrian crossing patterns to identify crosswalk zones.
Args:
pedestrians: List of pedestrian objects
traffic_lights: List of traffic light objects
region_distribution: Distribution of objects by region
Returns:
Dict: Identified crossing zones
"""
crossing_zones = {}
if not pedestrians:
return crossing_zones
# Group pedestrians by region
pedestrian_regions = {}
for p in pedestrians:
region = p["region"]
if region not in pedestrian_regions:
pedestrian_regions[region] = []
pedestrian_regions[region].append(p)
# Sort regions by pedestrian count to find main crossing areas
sorted_regions = sorted(pedestrian_regions.items(), key=lambda x: len(x[1]), reverse=True)
# Create crossing zones for regions with pedestrians
for idx, (region, peds) in enumerate(sorted_regions[:2]): # Focus on top 2 regions
# Check if there are traffic lights nearby to indicate a crosswalk
has_nearby_signals = any(t["region"] == region for t in traffic_lights)
# Create crossing zone with descriptive naming
zone_name = f"crossing_zone_{idx+1}"
direction = self._get_directional_description(region)
description = f"Pedestrian crossing area with {len(peds)} "
description += "person" if len(peds) == 1 else "people"
if direction:
description += f" in {direction} direction"
if has_nearby_signals:
description += " near traffic signals"
crossing_zones[zone_name] = {
"region": region,
"objects": ["pedestrian"] * len(peds),
"description": description
}
return crossing_zones
def _analyze_traffic_zones(self, vehicles: List[Dict], region_distribution: Dict) -> Dict:
"""
Analyze vehicle distribution to identify traffic zones with directional awareness.
Args:
vehicles: List of vehicle objects
region_distribution: Distribution of objects by region
Returns:
Dict: Identified traffic zones
"""
traffic_zones = {}
if not vehicles:
return traffic_zones
# Group vehicles by region
vehicle_regions = {}
for v in vehicles:
region = v["region"]
if region not in vehicle_regions:
vehicle_regions[region] = []
vehicle_regions[region].append(v)
# Create traffic zones for regions with vehicles
main_traffic_region = max(vehicle_regions.items(), key=lambda x: len(x[1]), default=(None, []))
if main_traffic_region[0] is not None:
region = main_traffic_region[0]
vehicles_in_region = main_traffic_region[1]
# Get a list of vehicle types for description
vehicle_types = [v["class_name"] for v in vehicles_in_region]
unique_types = list(set(vehicle_types))
# Get directional description
direction = self._get_directional_description(region)
# Create descriptive zone
traffic_zones["vehicle_zone"] = {
"region": region,
"objects": vehicle_types,
"description": f"Vehicle traffic area with {', '.join(unique_types[:3])}" +
(f" in {direction} area" if direction else "")
}
# If vehicles are distributed across multiple regions, create secondary zones
if len(vehicle_regions) > 1:
# Get second most populated region
sorted_regions = sorted(vehicle_regions.items(), key=lambda x: len(x[1]), reverse=True)
if len(sorted_regions) > 1:
second_region, second_vehicles = sorted_regions[1]
direction = self._get_directional_description(second_region)
vehicle_types = [v["class_name"] for v in second_vehicles]
unique_types = list(set(vehicle_types))
traffic_zones["secondary_vehicle_zone"] = {
"region": second_region,
"objects": vehicle_types,
"description": f"Secondary traffic area with {', '.join(unique_types[:2])}" +
(f" in {direction} direction" if direction else "")
}
return traffic_zones
def _get_directional_description(self, region: str) -> str:
"""
Convert region name to a directional description.
Args:
region: Region name from the grid
Returns:
str: Directional description
"""
if "top" in region and "left" in region:
return "northwest"
elif "top" in region and "right" in region:
return "northeast"
elif "bottom" in region and "left" in region:
return "southwest"
elif "bottom" in region and "right" in region:
return "southeast"
elif "top" in region:
return "north"
elif "bottom" in region:
return "south"
elif "left" in region:
return "west"
elif "right" in region:
return "east"
else:
return "central"
def _create_distribution_map(self, detected_objects: List[Dict]) -> Dict:
"""
Create a distribution map of objects across regions for spatial analysis.
Args:
detected_objects: List of detected objects
Returns:
Dict: Distribution map of objects by region and class
"""
distribution = {}
# Initialize all regions
for region in self.regions.keys():
distribution[region] = {
"total": 0,
"objects": {},
"density": 0
}
# Populate the distribution
for obj in detected_objects:
region = obj["region"]
class_id = obj["class_id"]
class_name = obj["class_name"]
distribution[region]["total"] += 1
if class_id not in distribution[region]["objects"]:
distribution[region]["objects"][class_id] = {
"name": class_name,
"count": 0,
"positions": []
}
distribution[region]["objects"][class_id]["count"] += 1
# Store position for spatial relationship analysis
if "normalized_center" in obj:
distribution[region]["objects"][class_id]["positions"].append(obj["normalized_center"])
# Calculate object density for each region
for region, data in distribution.items():
# Assuming all regions are equal size in the grid
data["density"] = data["total"] / 1
return distribution
def _identify_asian_cultural_zones(self, category_regions: Dict, detected_objects: List[Dict], scene_type: str) -> Dict:
"""
Identify functional zones for scenes with Asian cultural context.
Args:
category_regions: Objects grouped by category and region
detected_objects: List of detected objects
scene_type: Specific scene type
Returns:
Dict: Asian cultural functional zones
"""
zones = {}
# Identify storefront zone
storefront_items = []
storefront_regions = {}
# Since storefronts aren't directly detectable, infer from context
# For example, look for regions with signs, people, and smaller objects
sign_regions = set()
for obj in detected_objects:
if obj["class_id"] == 0: # Person
region = obj["region"]
if region not in storefront_regions:
storefront_regions[region] = []
storefront_regions[region].append(obj)
# Add regions with people as potential storefront areas
sign_regions.add(region)
# Use the areas with most people as storefront zones
if storefront_regions:
main_storefront_regions = sorted(storefront_regions.items(),
key=lambda x: len(x[1]),
reverse=True)[:2] # Top 2 regions
for idx, (region, objs) in enumerate(main_storefront_regions):
zones[f"commercial_zone_{idx+1}"] = {
"region": region,
"objects": [obj["class_name"] for obj in objs],
"description": f"Asian commercial storefront with pedestrian activity"
}
# Identify pedestrian pathway - enhanced to better detect linear pathways
pathway_items = []
pathway_regions = {}
# Extract people for pathway analysis
people_objs = [obj for obj in detected_objects if obj["class_id"] == 0]
# Analyze if people form a line (typical of shopping streets)
people_positions = [obj["normalized_center"] for obj in people_objs]
structured_path = False
if len(people_positions) >= 3:
# Check if people are arranged along a similar y-coordinate (horizontal path)
y_coords = [pos[1] for pos in people_positions]
y_mean = sum(y_coords) / len(y_coords)
y_variance = sum((y - y_mean)**2 for y in y_coords) / len(y_coords)
horizontal_path = y_variance < 0.05 # Low variance indicates horizontal alignment
# Check if people are arranged along a similar x-coordinate (vertical path)
x_coords = [pos[0] for pos in people_positions]
x_mean = sum(x_coords) / len(x_coords)
x_variance = sum((x - x_mean)**2 for x in x_coords) / len(x_coords)
vertical_path = x_variance < 0.05 # Low variance indicates vertical alignment
structured_path = horizontal_path or vertical_path
path_direction = "horizontal" if horizontal_path else "vertical" if vertical_path else "meandering"
# Collect pathway objects (people, bicycles, motorcycles in middle area)
for obj in detected_objects:
if obj["class_id"] in [0, 1, 3]: # Person, bicycle, motorcycle
y_pos = obj["normalized_center"][1]
# Group by vertical position (middle of image likely pathway)
if 0.25 <= y_pos <= 0.75:
region = obj["region"]
if region not in pathway_regions:
pathway_regions[region] = []
pathway_regions[region].append(obj)
pathway_items.append(obj["class_name"])
if pathway_items:
path_desc = "Pedestrian walkway with people moving through the commercial area"
if structured_path:
path_desc = f"{path_direction.capitalize()} pedestrian walkway with organized foot traffic"
zones["pedestrian_pathway"] = {
"region": "middle_center", # Assumption: pathway often in middle
"objects": list(set(pathway_items)),
"description": path_desc
}
# Identify vendor zone (small stalls/shops - inferred from context)
has_small_objects = any(obj["class_id"] in [24, 26, 39, 41] for obj in detected_objects) # bags, bottles, cups
has_people = any(obj["class_id"] == 0 for obj in detected_objects)
if has_small_objects and has_people:
# Likely vendor areas are where people and small objects cluster
small_obj_regions = {}
for obj in detected_objects:
if obj["class_id"] in [24, 26, 39, 41, 67]: # bags, bottles, cups, phones
region = obj["region"]
if region not in small_obj_regions:
small_obj_regions[region] = []
small_obj_regions[region].append(obj)
if small_obj_regions:
main_vendor_region = max(small_obj_regions.items(),
key=lambda x: len(x[1]),
default=(None, []))
if main_vendor_region[0] is not None:
vendor_items = [obj["class_name"] for obj in main_vendor_region[1]]
zones["vendor_zone"] = {
"region": main_vendor_region[0],
"objects": list(set(vendor_items)),
"description": "Vendor or market stall area with small merchandise"
}
# For night markets, identify illuminated zones
if scene_type == "asian_night_market":
# Night markets typically have bright spots for food stalls
# This would be enhanced with lighting analysis integration
zones["food_stall_zone"] = {
"region": "middle_center",
"objects": ["inferred food stalls"],
"description": "Food stall area typical of Asian night markets"
}
return zones
def _identify_upscale_dining_zones(self, category_regions: Dict, detected_objects: List[Dict]) -> Dict:
"""
Identify functional zones for upscale dining settings.
Args:
category_regions: Objects grouped by category and region
detected_objects: List of detected objects
Returns:
Dict: Upscale dining functional zones
"""
zones = {}
# Identify dining table zone
dining_items = []
dining_regions = {}
for obj in detected_objects:
if obj["class_id"] in [40, 41, 42, 43, 44, 45, 60]: # Wine glass, cup, fork, knife, spoon, bowl, table
region = obj["region"]
if region not in dining_regions:
dining_regions[region] = []
dining_regions[region].append(obj)
dining_items.append(obj["class_name"])
if dining_items:
main_dining_region = max(dining_regions.items(),
key=lambda x: len(x[1]),
default=(None, []))
if main_dining_region[0] is not None:
zones["formal_dining_zone"] = {
"region": main_dining_region[0],
"objects": list(set(dining_items)),
"description": f"Formal dining area with {', '.join(list(set(dining_items))[:3])}"
}
# Identify decorative zone with enhanced detection
decor_items = []
decor_regions = {}
# Look for decorative elements (vases, wine glasses, unused dishes)
for obj in detected_objects:
if obj["class_id"] in [75, 40]: # Vase, wine glass
region = obj["region"]
if region not in decor_regions:
decor_regions[region] = []
decor_regions[region].append(obj)
decor_items.append(obj["class_name"])
if decor_items:
main_decor_region = max(decor_regions.items(),
key=lambda x: len(x[1]),
default=(None, []))
if main_decor_region[0] is not None:
zones["decorative_zone"] = {
"region": main_decor_region[0],
"objects": list(set(decor_items)),
"description": f"Decorative area with {', '.join(list(set(decor_items)))}"
}
# Identify seating arrangement zone
chairs = [obj for obj in detected_objects if obj["class_id"] == 56] # chairs
if len(chairs) >= 2:
chair_regions = {}
for obj in chairs:
region = obj["region"]
if region not in chair_regions:
chair_regions[region] = []
chair_regions[region].append(obj)
if chair_regions:
main_seating_region = max(chair_regions.items(),
key=lambda x: len(x[1]),
default=(None, []))
if main_seating_region[0] is not None:
zones["dining_seating_zone"] = {
"region": main_seating_region[0],
"objects": ["chair"] * len(main_seating_region[1]),
"description": f"Formal dining seating arrangement with {len(main_seating_region[1])} chairs"
}
# Identify serving area (if different from dining area)
serving_items = []
serving_regions = {}
# Serving areas might have bottles, bowls, containers
for obj in detected_objects:
if obj["class_id"] in [39, 45]: # Bottle, bowl
# Check if it's in a different region from the main dining table
if "formal_dining_zone" in zones and obj["region"] != zones["formal_dining_zone"]["region"]:
region = obj["region"]
if region not in serving_regions:
serving_regions[region] = []
serving_regions[region].append(obj)
serving_items.append(obj["class_name"])
if serving_items:
main_serving_region = max(serving_regions.items(),
key=lambda x: len(x[1]),
default=(None, []))
if main_serving_region[0] is not None:
zones["serving_zone"] = {
"region": main_serving_region[0],
"objects": list(set(serving_items)),
"description": f"Serving or sideboard area with {', '.join(list(set(serving_items)))}"
}
return zones
def _identify_financial_district_zones(self, category_regions: Dict, detected_objects: List[Dict]) -> Dict:
"""
Identify functional zones for financial district scenes.
Args:
category_regions: Objects grouped by category and region
detected_objects: List of detected objects
Returns:
Dict: Financial district functional zones
"""
zones = {}
# Identify traffic zone
traffic_items = []
traffic_regions = {}
for obj in detected_objects:
if obj["class_id"] in [1, 2, 3, 5, 6, 7, 9]: # Various vehicles and traffic lights
region = obj["region"]
if region not in traffic_regions:
traffic_regions[region] = []
traffic_regions[region].append(obj)
traffic_items.append(obj["class_name"])
if traffic_items:
main_traffic_region = max(traffic_regions.items(),
key=lambda x: len(x[1]),
default=(None, []))
if main_traffic_region[0] is not None:
zones["traffic_zone"] = {
"region": main_traffic_region[0],
"objects": list(set(traffic_items)),
"description": f"Urban traffic area with {', '.join(list(set(traffic_items))[:3])}"
}
# Building zones on the sides (inferred from scene context)
# Enhanced to check if there are actual regions that might contain buildings
# Check for regions without vehicles or pedestrians - likely building areas
left_side_regions = ["top_left", "middle_left", "bottom_left"]
right_side_regions = ["top_right", "middle_right", "bottom_right"]
# Check left side
left_building_evidence = True
for region in left_side_regions:
# If many vehicles or people in this region, less likely to be buildings
vehicle_in_region = any(obj["region"] == region and obj["class_id"] in [1, 2, 3, 5, 7]
for obj in detected_objects)
people_in_region = any(obj["region"] == region and obj["class_id"] == 0
for obj in detected_objects)
if vehicle_in_region or people_in_region:
left_building_evidence = False
break
# Check right side
right_building_evidence = True
for region in right_side_regions:
# If many vehicles or people in this region, less likely to be buildings
vehicle_in_region = any(obj["region"] == region and obj["class_id"] in [1, 2, 3, 5, 7]
for obj in detected_objects)
people_in_region = any(obj["region"] == region and obj["class_id"] == 0
for obj in detected_objects)
if vehicle_in_region or people_in_region:
right_building_evidence = False
break
# Add building zones if evidence supports them
if left_building_evidence:
zones["building_zone_left"] = {
"region": "middle_left",
"objects": ["building"], # Inferred
"description": "Tall buildings line the left side of the street"
}
if right_building_evidence:
zones["building_zone_right"] = {
"region": "middle_right",
"objects": ["building"], # Inferred
"description": "Tall buildings line the right side of the street"
}
# Identify pedestrian zone if people are present
people_objs = [obj for obj in detected_objects if obj["class_id"] == 0]
if people_objs:
people_regions = {}
for obj in people_objs:
region = obj["region"]
if region not in people_regions:
people_regions[region] = []
people_regions[region].append(obj)
if people_regions:
main_pedestrian_region = max(people_regions.items(),
key=lambda x: len(x[1]),
default=(None, []))
if main_pedestrian_region[0] is not None:
zones["pedestrian_zone"] = {
"region": main_pedestrian_region[0],
"objects": ["person"] * len(main_pedestrian_region[1]),
"description": f"Pedestrian area with {len(main_pedestrian_region[1])} people navigating the financial district"
}
return zones
def _identify_aerial_view_zones(self, category_regions: Dict, detected_objects: List[Dict], scene_type: str) -> Dict:
"""
Identify functional zones for scenes viewed from an aerial perspective.
Args:
category_regions: Objects grouped by category and region
detected_objects: List of detected objects
scene_type: Specific scene type
Returns:
Dict: Aerial view functional zones
"""
zones = {}
# For aerial views, we focus on patterns and flows rather than specific zones
# Identify pedestrian patterns
people_objs = [obj for obj in detected_objects if obj["class_id"] == 0]
if people_objs:
# Convert positions to arrays for pattern analysis
positions = np.array([obj["normalized_center"] for obj in people_objs])
if len(positions) >= 3:
# Calculate distribution metrics
x_coords = positions[:, 0]
y_coords = positions[:, 1]
x_mean = np.mean(x_coords)
y_mean = np.mean(y_coords)
x_std = np.std(x_coords)
y_std = np.std(y_coords)
# Determine if people are organized in a linear pattern
if x_std < 0.1 or y_std < 0.1:
# Linear distribution along one axis
pattern_direction = "vertical" if x_std < y_std else "horizontal"
zones["pedestrian_pattern"] = {
"region": "central",
"objects": ["person"] * len(people_objs),
"description": f"Aerial view shows a {pattern_direction} pedestrian movement pattern"
}
else:
# More dispersed pattern
zones["pedestrian_distribution"] = {
"region": "wide",
"objects": ["person"] * len(people_objs),
"description": f"Aerial view shows pedestrians distributed across the area"
}
# Identify vehicle patterns for traffic analysis
vehicle_objs = [obj for obj in detected_objects if obj["class_id"] in [1, 2, 3, 5, 6, 7]]
if vehicle_objs:
# Convert positions to arrays for pattern analysis
positions = np.array([obj["normalized_center"] for obj in vehicle_objs])
if len(positions) >= 2:
# Calculate distribution metrics
x_coords = positions[:, 0]
y_coords = positions[:, 1]
x_mean = np.mean(x_coords)
y_mean = np.mean(y_coords)
x_std = np.std(x_coords)
y_std = np.std(y_coords)
# Determine if vehicles are organized in lanes
if x_std < y_std * 0.5:
# Vehicles aligned vertically - indicates north-south traffic
zones["vertical_traffic_flow"] = {
"region": "central_vertical",
"objects": [obj["class_name"] for obj in vehicle_objs[:5]],
"description": "North-south traffic flow visible from aerial view"
}
elif y_std < x_std * 0.5:
# Vehicles aligned horizontally - indicates east-west traffic
zones["horizontal_traffic_flow"] = {
"region": "central_horizontal",
"objects": [obj["class_name"] for obj in vehicle_objs[:5]],
"description": "East-west traffic flow visible from aerial view"
}
else:
# Vehicles in multiple directions - indicates intersection
zones["intersection_traffic"] = {
"region": "central",
"objects": [obj["class_name"] for obj in vehicle_objs[:5]],
"description": "Multi-directional traffic at intersection visible from aerial view"
}
# For intersection specific aerial views, identify crossing patterns
if "intersection" in scene_type:
# Check for traffic signals
traffic_light_objs = [obj for obj in detected_objects if obj["class_id"] == 9]
if traffic_light_objs:
zones["traffic_control_pattern"] = {
"region": "intersection",
"objects": ["traffic light"] * len(traffic_light_objs),
"description": f"Intersection traffic control with {len(traffic_light_objs)} signals visible from above"
}
# Crosswalks are inferred from context in aerial views
zones["crossing_pattern"] = {
"region": "central",
"objects": ["inferred crosswalk"],
"description": "Crossing pattern visible from aerial perspective"
}
# For plaza aerial views, identify gathering patterns
if "plaza" in scene_type:
# Plazas typically have central open area with people
if people_objs:
# Check if people are clustered in central region
central_people = [obj for obj in people_objs
if "middle" in obj["region"]]
if central_people:
zones["central_gathering"] = {
"region": "middle_center",
"objects": ["person"] * len(central_people),
"description": f"Central plaza gathering area with {len(central_people)} people viewed from above"
}
return zones
def _identify_outdoor_general_zones(self, category_regions: Dict, detected_objects: List[Dict], scene_type: str) -> Dict:
"""
Identify functional zones for general outdoor scenes.
Args:
category_regions: Objects grouped by category and region
detected_objects: List of detected objects
scene_type: Specific outdoor scene type
Returns:
Dict: Outdoor functional zones
"""
zones = {}
# Identify pedestrian zones
people_objs = [obj for obj in detected_objects if obj["class_id"] == 0]
if people_objs:
people_regions = {}
for obj in people_objs:
region = obj["region"]
if region not in people_regions:
people_regions[region] = []
people_regions[region].append(obj)
if people_regions:
# Find main pedestrian areas
main_people_regions = sorted(people_regions.items(),
key=lambda x: len(x[1]),
reverse=True)[:2] # Top 2 regions
for idx, (region, objs) in enumerate(main_people_regions):
if len(objs) > 0:
zones[f"pedestrian_zone_{idx+1}"] = {
"region": region,
"objects": ["person"] * len(objs),
"description": f"Pedestrian area with {len(objs)} {'people' if len(objs) > 1 else 'person'}"
}
# Identify vehicle zones for streets and parking lots
vehicle_objs = [obj for obj in detected_objects if obj["class_id"] in [1, 2, 3, 5, 6, 7]]
if vehicle_objs:
vehicle_regions = {}
for obj in vehicle_objs:
region = obj["region"]
if region not in vehicle_regions:
vehicle_regions[region] = []
vehicle_regions[region].append(obj)
if vehicle_regions:
main_vehicle_region = max(vehicle_regions.items(),
key=lambda x: len(x[1]),
default=(None, []))
if main_vehicle_region[0] is not None:
vehicle_types = [obj["class_name"] for obj in main_vehicle_region[1]]
zones["vehicle_zone"] = {
"region": main_vehicle_region[0],
"objects": vehicle_types,
"description": f"Traffic area with {', '.join(list(set(vehicle_types))[:3])}"
}
# For park areas, identify recreational zones
if scene_type == "park_area":
# Look for recreational objects (sports balls, kites, etc.)
rec_items = []
rec_regions = {}
for obj in detected_objects:
if obj["class_id"] in [32, 33, 34, 35, 38]: # sports ball, kite, baseball bat, glove, tennis racket
region = obj["region"]
if region not in rec_regions:
rec_regions[region] = []
rec_regions[region].append(obj)
rec_items.append(obj["class_name"])
if rec_items:
main_rec_region = max(rec_regions.items(),
key=lambda x: len(x[1]),
default=(None, []))
if main_rec_region[0] is not None:
zones["recreational_zone"] = {
"region": main_rec_region[0],
"objects": list(set(rec_items)),
"description": f"Recreational area with {', '.join(list(set(rec_items)))}"
}
# For parking lots, identify parking zones
if scene_type == "parking_lot":
# Look for parked cars with consistent spacing
car_objs = [obj for obj in detected_objects if obj["class_id"] == 2] # cars
if len(car_objs) >= 3:
# Check if cars are arranged in patterns (simplified)
car_positions = [obj["normalized_center"] for obj in car_objs]
# Check for row patterns by analyzing vertical positions
y_coords = [pos[1] for pos in car_positions]
y_clusters = {}
# Simplified clustering - group cars by similar y-coordinates
for i, y in enumerate(y_coords):
assigned = False
for cluster_y in y_clusters.keys():
if abs(y - cluster_y) < 0.1: # Within 10% of image height
y_clusters[cluster_y].append(i)
assigned = True
break
if not assigned:
y_clusters[y] = [i]
# If we have row patterns
if max(len(indices) for indices in y_clusters.values()) >= 2:
zones["parking_row"] = {
"region": "central",
"objects": ["car"] * len(car_objs),
"description": f"Organized parking area with vehicles arranged in rows"
}
else:
zones["parking_area"] = {
"region": "wide",
"objects": ["car"] * len(car_objs),
"description": f"Parking area with {len(car_objs)} vehicles"
}
return zones
def _identify_default_zones(self, category_regions: Dict, detected_objects: List[Dict]) -> Dict:
"""
Identify general functional zones when no specific scene type is matched.
Args:
category_regions: Objects grouped by category and region
detected_objects: List of detected objects
Returns:
Dict: Default functional zones
"""
zones = {}
# Group objects by category and find main concentrations
for category, regions in category_regions.items():
if not regions:
continue
# Find region with most objects in this category
main_region = max(regions.items(),
key=lambda x: len(x[1]),
default=(None, []))
if main_region[0] is None or len(main_region[1]) < 2:
continue
# Create zone based on object category
zone_objects = [obj["class_name"] for obj in main_region[1]]
# Skip if too few objects
if len(zone_objects) < 2:
continue
# Create appropriate zone name and description based on category
if category == "furniture":
zones["furniture_zone"] = {
"region": main_region[0],
"objects": zone_objects,
"description": f"Area with furniture including {', '.join(zone_objects[:3])}"
}
elif category == "electronics":
zones["electronics_zone"] = {
"region": main_region[0],
"objects": zone_objects,
"description": f"Area with electronic devices including {', '.join(zone_objects[:3])}"
}
elif category == "kitchen_items":
zones["dining_zone"] = {
"region": main_region[0],
"objects": zone_objects,
"description": f"Dining or food area with {', '.join(zone_objects[:3])}"
}
elif category == "vehicles":
zones["vehicle_zone"] = {
"region": main_region[0],
"objects": zone_objects,
"description": f"Area with vehicles including {', '.join(zone_objects[:3])}"
}
elif category == "personal_items":
zones["personal_items_zone"] = {
"region": main_region[0],
"objects": zone_objects,
"description": f"Area with personal items including {', '.join(zone_objects[:3])}"
}
# Check for people groups
people_objs = [obj for obj in detected_objects if obj["class_id"] == 0]
if len(people_objs) >= 2:
people_regions = {}
for obj in people_objs:
region = obj["region"]
if region not in people_regions:
people_regions[region] = []
people_regions[region].append(obj)
if people_regions:
main_people_region = max(people_regions.items(),
key=lambda x: len(x[1]),
default=(None, []))
if main_people_region[0] is not None:
zones["people_zone"] = {
"region": main_people_region[0],
"objects": ["person"] * len(main_people_region[1]),
"description": f"Area with {len(main_people_region[1])} people"
}
return zones
def _find_main_region(self, region_objects_dict: Dict) -> str:
"""Find the main region with the most objects"""
if not region_objects_dict:
return "unknown"
return max(region_objects_dict.items(),
key=lambda x: len(x[1]),
default=("unknown", []))[0]
def _find_main_region(self, region_objects_dict: Dict) -> str:
"""Find the main region with the most objects"""
if not region_objects_dict:
return "unknown"
return max(region_objects_dict.items(),
key=lambda x: len(x[1]),
default=("unknown", []))[0]
|