from functools import wraps import torch from huggingface_hub import HfApi import os import logging import asyncio logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class DeviceManager: _instance = None def __new__(cls): if cls._instance is None: cls._instance = super(DeviceManager, cls).__new__(cls) cls._instance._initialized = False return cls._instance def __init__(self): if self._initialized: return self._initialized = True self._current_device = None self._zero_gpu_available = None def check_zero_gpu_availability(self): try: if 'SPACE_ID' in os.environ: api = HfApi() space_info = api.get_space_runtime(os.environ['SPACE_ID']) if hasattr(space_info, 'hardware') and space_info.hardware.get('zerogpu', False): self._zero_gpu_available = True return True except Exception as e: logger.warning(f"Error checking ZeroGPU availability: {e}") self._zero_gpu_available = False return False def get_optimal_device(self): if self._current_device is None: if self.check_zero_gpu_availability(): try: self._current_device = torch.device('cuda') logger.info("Using ZeroGPU") except Exception as e: logger.warning(f"Failed to initialize ZeroGPU: {e}") self._current_device = torch.device('cpu') else: self._current_device = torch.device('cpu') logger.info("Using CPU") return self._current_device def device_handler(func): """簡化版的 device handler""" @wraps(func) async def wrapper(*args, **kwargs): device_mgr = DeviceManager() try: result = await func(*args, **kwargs) return result except RuntimeError as e: if "out of memory" in str(e) or "CUDA" in str(e): logger.warning("ZeroGPU unavailable, falling back to CPU") device_mgr._current_device = torch.device('cpu') return await func(*args, **kwargs) raise e return wrapper