Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Upload 3 files
Browse files- breed_recommendation.py +480 -0
- recommendation_html_format.py +571 -0
- smart_breed_matcher.py +962 -0
    	
        breed_recommendation.py
    ADDED
    
    | @@ -0,0 +1,480 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
             | 
| 2 | 
            +
            import sqlite3
         | 
| 3 | 
            +
            import gradio as gr
         | 
| 4 | 
            +
            from dog_database import get_dog_description, dog_data
         | 
| 5 | 
            +
            from breed_health_info import breed_health_info
         | 
| 6 | 
            +
            from breed_noise_info import breed_noise_info
         | 
| 7 | 
            +
            from scoring_calculation_system import UserPreferences, calculate_compatibility_score
         | 
| 8 | 
            +
            from recommendation_html_format import format_recommendation_html, get_breed_recommendations
         | 
| 9 | 
            +
            from smart_breed_matcher import SmartBreedMatcher
         | 
| 10 | 
            +
            from description_search_ui import create_description_search_tab
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            def create_recommendation_tab(UserPreferences, get_breed_recommendations, format_recommendation_html, history_component):
         | 
| 13 | 
            +
             | 
| 14 | 
            +
                with gr.TabItem("Breed Recommendation"):
         | 
| 15 | 
            +
                    with gr.Tabs():
         | 
| 16 | 
            +
                        with gr.Tab("Find by Criteria"):
         | 
| 17 | 
            +
                            gr.HTML("""
         | 
| 18 | 
            +
                                <div style='
         | 
| 19 | 
            +
                                    text-align: center;
         | 
| 20 | 
            +
                                    padding: 20px 0;
         | 
| 21 | 
            +
                                    margin: 15px 0;
         | 
| 22 | 
            +
                                    background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
         | 
| 23 | 
            +
                                    border-radius: 10px;
         | 
| 24 | 
            +
                                '>
         | 
| 25 | 
            +
                                    <p style='
         | 
| 26 | 
            +
                                        font-size: 1.2em;
         | 
| 27 | 
            +
                                        margin: 0;
         | 
| 28 | 
            +
                                        padding: 0 20px;
         | 
| 29 | 
            +
                                        line-height: 1.5;
         | 
| 30 | 
            +
                                        background: linear-gradient(90deg, #4299e1, #48bb78);
         | 
| 31 | 
            +
                                        -webkit-background-clip: text;
         | 
| 32 | 
            +
                                        -webkit-text-fill-color: transparent;
         | 
| 33 | 
            +
                                        font-weight: 600;
         | 
| 34 | 
            +
                                    '>
         | 
| 35 | 
            +
                                        Tell us about your lifestyle, and we'll recommend the perfect dog breeds for you!
         | 
| 36 | 
            +
                                    </p>
         | 
| 37 | 
            +
                                </div>
         | 
| 38 | 
            +
                            """)
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                            with gr.Row():
         | 
| 41 | 
            +
                                with gr.Column():
         | 
| 42 | 
            +
                                    living_space = gr.Radio(
         | 
| 43 | 
            +
                                        choices=["apartment", "house_small", "house_large"],
         | 
| 44 | 
            +
                                        label="What type of living space do you have?",
         | 
| 45 | 
            +
                                        info="Choose your current living situation",
         | 
| 46 | 
            +
                                        value="apartment"
         | 
| 47 | 
            +
                                    )
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                                    exercise_time = gr.Slider(
         | 
| 50 | 
            +
                                        minimum=0,
         | 
| 51 | 
            +
                                        maximum=180,
         | 
| 52 | 
            +
                                        value=60,
         | 
| 53 | 
            +
                                        label="Daily exercise time (minutes)",
         | 
| 54 | 
            +
                                        info="Consider walks, play time, and training"
         | 
| 55 | 
            +
                                    )
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                                    grooming_commitment = gr.Radio(
         | 
| 58 | 
            +
                                        choices=["low", "medium", "high"],
         | 
| 59 | 
            +
                                        label="Grooming commitment level",
         | 
| 60 | 
            +
                                        info="Low: monthly, Medium: weekly, High: daily",
         | 
| 61 | 
            +
                                        value="medium"
         | 
| 62 | 
            +
                                    )
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                                with gr.Column():
         | 
| 65 | 
            +
                                    experience_level = gr.Radio(
         | 
| 66 | 
            +
                                        choices=["beginner", "intermediate", "advanced"],
         | 
| 67 | 
            +
                                        label="Dog ownership experience",
         | 
| 68 | 
            +
                                        info="Be honest - this helps find the right match",
         | 
| 69 | 
            +
                                        value="beginner"
         | 
| 70 | 
            +
                                    )
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                                    has_children = gr.Checkbox(
         | 
| 73 | 
            +
                                        label="Have children at home",
         | 
| 74 | 
            +
                                        info="Helps recommend child-friendly breeds"
         | 
| 75 | 
            +
                                    )
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                                    noise_tolerance = gr.Radio(
         | 
| 78 | 
            +
                                        choices=["low", "medium", "high"],
         | 
| 79 | 
            +
                                        label="Noise tolerance level",
         | 
| 80 | 
            +
                                        info="Some breeds are more vocal than others",
         | 
| 81 | 
            +
                                        value="medium"
         | 
| 82 | 
            +
                                    )
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                            get_recommendations_btn = gr.Button("Find My Perfect Match! 🔍", variant="primary")
         | 
| 85 | 
            +
                            recommendation_output = gr.HTML(label="Breed Recommendations")
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                        with gr.Tab("Find by Description"):
         | 
| 88 | 
            +
                            description_input, description_search_btn, description_output, loading_msg = create_description_search_tab()
         | 
| 89 | 
            +
             | 
| 90 | 
            +
             | 
| 91 | 
            +
                    def on_find_match_click(*args):
         | 
| 92 | 
            +
                        try:
         | 
| 93 | 
            +
                            user_prefs = UserPreferences(
         | 
| 94 | 
            +
                                living_space=args[0],
         | 
| 95 | 
            +
                                exercise_time=args[1],
         | 
| 96 | 
            +
                                grooming_commitment=args[2],
         | 
| 97 | 
            +
                                experience_level=args[3],
         | 
| 98 | 
            +
                                has_children=args[4],
         | 
| 99 | 
            +
                                noise_tolerance=args[5],
         | 
| 100 | 
            +
                                space_for_play=True if args[0] != "apartment" else False,
         | 
| 101 | 
            +
                                other_pets=False,
         | 
| 102 | 
            +
                                climate="moderate",
         | 
| 103 | 
            +
                                health_sensitivity="medium",  # 新增: 默認中等敏感度
         | 
| 104 | 
            +
                                barking_acceptance=args[5]    # 使用 noise_tolerance 作為 barking_acceptance
         | 
| 105 | 
            +
                            )
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                            recommendations = get_breed_recommendations(user_prefs, top_n=10)
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                            history_results = [{
         | 
| 110 | 
            +
                                'breed': rec['breed'],
         | 
| 111 | 
            +
                                'rank': rec['rank'],
         | 
| 112 | 
            +
                                'overall_score': rec['final_score'],
         | 
| 113 | 
            +
                                'base_score': rec['base_score'],
         | 
| 114 | 
            +
                                'bonus_score': rec['bonus_score'],
         | 
| 115 | 
            +
                                'scores': rec['scores']
         | 
| 116 | 
            +
                            } for rec in recommendations]
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                            # 保存到歷史記錄,也需要更新保存的偏好設定
         | 
| 119 | 
            +
                            history_component.save_search(
         | 
| 120 | 
            +
                                user_preferences={
         | 
| 121 | 
            +
                                    'living_space': args[0],
         | 
| 122 | 
            +
                                    'exercise_time': args[1],
         | 
| 123 | 
            +
                                    'grooming_commitment': args[2],
         | 
| 124 | 
            +
                                    'experience_level': args[3],
         | 
| 125 | 
            +
                                    'has_children': args[4],
         | 
| 126 | 
            +
                                    'noise_tolerance': args[5],
         | 
| 127 | 
            +
                                    'health_sensitivity': "medium",
         | 
| 128 | 
            +
                                    'barking_acceptance': args[5]
         | 
| 129 | 
            +
                                },
         | 
| 130 | 
            +
                                results=history_results
         | 
| 131 | 
            +
                            )
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                            return format_recommendation_html(recommendations, is_description_search=False)
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                        except Exception as e:
         | 
| 136 | 
            +
                            print(f"Error in find match: {str(e)}")
         | 
| 137 | 
            +
                            import traceback
         | 
| 138 | 
            +
                            print(traceback.format_exc())
         | 
| 139 | 
            +
                            return "Error getting recommendations"
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                    def on_description_search(description: str):
         | 
| 142 | 
            +
                        try:
         | 
| 143 | 
            +
                            # 初始化匹配器
         | 
| 144 | 
            +
                            matcher = SmartBreedMatcher(dog_data)
         | 
| 145 | 
            +
                            breed_recommendations = matcher.match_user_preference(description, top_n=10)
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                            # 從描述中提取用戶偏好
         | 
| 148 | 
            +
                            user_prefs = UserPreferences(
         | 
| 149 | 
            +
                                living_space="apartment" if any(word in description.lower()
         | 
| 150 | 
            +
                                    for word in ["apartment", "flat", "condo"]) else "house_small",
         | 
| 151 | 
            +
                                exercise_time=120 if any(word in description.lower()
         | 
| 152 | 
            +
                                    for word in ["active", "exercise", "running", "athletic", "high energy"]) else 60,
         | 
| 153 | 
            +
                                grooming_commitment="high" if any(word in description.lower()
         | 
| 154 | 
            +
                                    for word in ["grooming", "brush", "maintain"]) else "medium",
         | 
| 155 | 
            +
                                experience_level="experienced" if any(word in description.lower()
         | 
| 156 | 
            +
                                    for word in ["experienced", "trained", "professional"]) else "intermediate",
         | 
| 157 | 
            +
                                has_children=any(word in description.lower()
         | 
| 158 | 
            +
                                    for word in ["children", "kids", "family", "child"]),
         | 
| 159 | 
            +
                                noise_tolerance="low" if any(word in description.lower()
         | 
| 160 | 
            +
                                    for word in ["quiet", "peaceful", "silent"]) else "medium",
         | 
| 161 | 
            +
                                space_for_play=any(word in description.lower()
         | 
| 162 | 
            +
                                    for word in ["yard", "garden", "outdoor", "space"]),
         | 
| 163 | 
            +
                                other_pets=any(word in description.lower()
         | 
| 164 | 
            +
                                    for word in ["other pets", "cats", "dogs"]),
         | 
| 165 | 
            +
                                climate="moderate",
         | 
| 166 | 
            +
                                health_sensitivity="high" if any(word in description.lower()
         | 
| 167 | 
            +
                                    for word in ["health", "medical", "sensitive"]) else "medium",
         | 
| 168 | 
            +
                                barking_acceptance="low" if any(word in description.lower()
         | 
| 169 | 
            +
                                    for word in ["quiet", "no barking"]) else None
         | 
| 170 | 
            +
                            )
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                            final_recommendations = []
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                            for smart_rec in breed_recommendations:
         | 
| 175 | 
            +
                                breed_name = smart_rec['breed']
         | 
| 176 | 
            +
                                breed_info = get_dog_description(breed_name)
         | 
| 177 | 
            +
                                if not isinstance(breed_info, dict):
         | 
| 178 | 
            +
                                    continue
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                                # 獲取基礎分數
         | 
| 181 | 
            +
                                base_score = smart_rec.get('base_score', 0.7)
         | 
| 182 | 
            +
                                similarity = smart_rec.get('similarity', 0)
         | 
| 183 | 
            +
                                is_preferred = smart_rec.get('is_preferred', False)
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                                bonus_reasons = []
         | 
| 186 | 
            +
                                bonus_score = 0
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                                # 1. 尺寸評估
         | 
| 189 | 
            +
                                size = breed_info.get('Size', '')
         | 
| 190 | 
            +
                                if size in ['Small', 'Tiny']:
         | 
| 191 | 
            +
                                    if "apartment" in description.lower():
         | 
| 192 | 
            +
                                        bonus_score += 0.05
         | 
| 193 | 
            +
                                        bonus_reasons.append("Suitable size for apartment (+5%)")
         | 
| 194 | 
            +
                                    else:
         | 
| 195 | 
            +
                                        bonus_score -= 0.25
         | 
| 196 | 
            +
                                        bonus_reasons.append("Size too small (-25%)")
         | 
| 197 | 
            +
                                elif size == 'Medium':
         | 
| 198 | 
            +
                                    bonus_score += 0.15
         | 
| 199 | 
            +
                                    bonus_reasons.append("Ideal size (+15%)")
         | 
| 200 | 
            +
                                elif size == 'Large':
         | 
| 201 | 
            +
                                    if "apartment" in description.lower():
         | 
| 202 | 
            +
                                        bonus_score -= 0.05
         | 
| 203 | 
            +
                                        bonus_reasons.append("May be too large for apartment (-5%)")
         | 
| 204 | 
            +
                                elif size == 'Giant':
         | 
| 205 | 
            +
                                    bonus_score -= 0.20
         | 
| 206 | 
            +
                                    bonus_reasons.append("Size too large (-20%)")
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                                # 2. 運��需求評估
         | 
| 209 | 
            +
                                exercise_needs = breed_info.get('Exercise_Needs', '')
         | 
| 210 | 
            +
                                if any(word in description.lower() for word in ['active', 'energetic', 'running']):
         | 
| 211 | 
            +
                                    if exercise_needs in ['High', 'Very High']:
         | 
| 212 | 
            +
                                        bonus_score += 0.20
         | 
| 213 | 
            +
                                        bonus_reasons.append("Exercise needs match (+20%)")
         | 
| 214 | 
            +
                                    elif exercise_needs == 'Low':
         | 
| 215 | 
            +
                                        bonus_score -= 0.15
         | 
| 216 | 
            +
                                        bonus_reasons.append("Insufficient exercise level (-15%)")
         | 
| 217 | 
            +
                                else:
         | 
| 218 | 
            +
                                    if exercise_needs == 'Moderate':
         | 
| 219 | 
            +
                                        bonus_score += 0.10
         | 
| 220 | 
            +
                                        bonus_reasons.append("Moderate exercise needs (+10%)")
         | 
| 221 | 
            +
             | 
| 222 | 
            +
                                # 3. 美容需求評估
         | 
| 223 | 
            +
                                grooming = breed_info.get('Grooming_Needs', '')
         | 
| 224 | 
            +
                                if user_prefs.grooming_commitment == "high":
         | 
| 225 | 
            +
                                    if grooming == 'High':
         | 
| 226 | 
            +
                                        bonus_score += 0.10
         | 
| 227 | 
            +
                                        bonus_reasons.append("High grooming match (+10%)")
         | 
| 228 | 
            +
                                else:
         | 
| 229 | 
            +
                                    if grooming == 'High':
         | 
| 230 | 
            +
                                        bonus_score -= 0.15
         | 
| 231 | 
            +
                                        bonus_reasons.append("High grooming needs (-15%)")
         | 
| 232 | 
            +
                                    elif grooming == 'Low':
         | 
| 233 | 
            +
                                        bonus_score += 0.10
         | 
| 234 | 
            +
                                        bonus_reasons.append("Low grooming needs (+10%)")
         | 
| 235 | 
            +
             | 
| 236 | 
            +
                                # 4. 家庭適應性評估
         | 
| 237 | 
            +
                                if user_prefs.has_children:
         | 
| 238 | 
            +
                                    if breed_info.get('Good_With_Children'):
         | 
| 239 | 
            +
                                        bonus_score += 0.15
         | 
| 240 | 
            +
                                        bonus_reasons.append("Excellent with children (+15%)")
         | 
| 241 | 
            +
                                    temperament = breed_info.get('Temperament', '').lower()
         | 
| 242 | 
            +
                                    if any(trait in temperament for trait in ['gentle', 'patient', 'friendly']):
         | 
| 243 | 
            +
                                        bonus_score += 0.05
         | 
| 244 | 
            +
                                        bonus_reasons.append("Family-friendly temperament (+5%)")
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                                # 5. 噪音評估
         | 
| 247 | 
            +
                                if user_prefs.noise_tolerance == "low":
         | 
| 248 | 
            +
                                    noise_level = breed_noise_info.get(breed_name, {}).get('noise_level', 'Unknown')
         | 
| 249 | 
            +
                                    if noise_level == 'High':
         | 
| 250 | 
            +
                                        bonus_score -= 0.10
         | 
| 251 | 
            +
                                        bonus_reasons.append("High noise level (-10%)")
         | 
| 252 | 
            +
                                    elif noise_level == 'Low':
         | 
| 253 | 
            +
                                        bonus_score += 0.10
         | 
| 254 | 
            +
                                        bonus_reasons.append("Low noise level (+10%)")
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                                # 6. 健康考慮
         | 
| 257 | 
            +
                                if user_prefs.health_sensitivity == "high":
         | 
| 258 | 
            +
                                    health_score = smart_rec.get('health_score', 0.5)
         | 
| 259 | 
            +
                                    if health_score > 0.8:
         | 
| 260 | 
            +
                                        bonus_score += 0.10
         | 
| 261 | 
            +
                                        bonus_reasons.append("Excellent health score (+10%)")
         | 
| 262 | 
            +
                                    elif health_score < 0.5:
         | 
| 263 | 
            +
                                        bonus_score -= 0.10
         | 
| 264 | 
            +
                                        bonus_reasons.append("Health concerns (-10%)")
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                                # 7. 品種偏好獎勵
         | 
| 267 | 
            +
                                if is_preferred:
         | 
| 268 | 
            +
                                    bonus_score += 0.15
         | 
| 269 | 
            +
                                    bonus_reasons.append("Directly mentioned breed (+15%)")
         | 
| 270 | 
            +
                                elif similarity > 0.8:
         | 
| 271 | 
            +
                                    bonus_score += 0.10
         | 
| 272 | 
            +
                                    bonus_reasons.append("Very similar to preferred breed (+10%)")
         | 
| 273 | 
            +
             | 
| 274 | 
            +
                                # 計算最終分數
         | 
| 275 | 
            +
                                final_score = min(0.95, base_score + bonus_score)
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                                space_score = _calculate_space_compatibility(
         | 
| 278 | 
            +
                                    breed_info.get('Size', 'Medium'),
         | 
| 279 | 
            +
                                    user_prefs.living_space
         | 
| 280 | 
            +
                                )
         | 
| 281 | 
            +
             | 
| 282 | 
            +
                                exercise_score = _calculate_exercise_compatibility(
         | 
| 283 | 
            +
                                    breed_info.get('Exercise_Needs', 'Moderate'),
         | 
| 284 | 
            +
                                    user_prefs.exercise_time
         | 
| 285 | 
            +
                                )
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                                grooming_score = _calculate_grooming_compatibility(
         | 
| 288 | 
            +
                                    breed_info.get('Grooming_Needs', 'Moderate'),
         | 
| 289 | 
            +
                                    user_prefs.grooming_commitment
         | 
| 290 | 
            +
                                )
         | 
| 291 | 
            +
             | 
| 292 | 
            +
                                experience_score = _calculate_experience_compatibility(
         | 
| 293 | 
            +
                                    breed_info.get('Care_Level', 'Moderate'),
         | 
| 294 | 
            +
                                    user_prefs.experience_level
         | 
| 295 | 
            +
                                )
         | 
| 296 | 
            +
             | 
| 297 | 
            +
                                scores = {
         | 
| 298 | 
            +
                                    'overall': final_score,
         | 
| 299 | 
            +
                                    'space': space_score,
         | 
| 300 | 
            +
                                    'exercise': exercise_score,
         | 
| 301 | 
            +
                                    'grooming': grooming_score,
         | 
| 302 | 
            +
                                    'experience': experience_score,
         | 
| 303 | 
            +
                                    'noise': smart_rec.get('scores', {}).get('noise', 0.0),
         | 
| 304 | 
            +
                                    'health': smart_rec.get('health_score', 0.5),
         | 
| 305 | 
            +
                                    'temperament': smart_rec.get('scores', {}).get('temperament', 0.0)
         | 
| 306 | 
            +
                                }
         | 
| 307 | 
            +
             | 
| 308 | 
            +
             | 
| 309 | 
            +
                                final_recommendations.append({
         | 
| 310 | 
            +
                                    'rank': 0,
         | 
| 311 | 
            +
                                    'breed': breed_name,
         | 
| 312 | 
            +
                                    'scores': scores,
         | 
| 313 | 
            +
                                    'base_score': round(base_score, 4),
         | 
| 314 | 
            +
                                    'bonus_score': round(bonus_score, 4),
         | 
| 315 | 
            +
                                    'final_score': round(final_score, 4),
         | 
| 316 | 
            +
                                    'match_reason': ' • '.join(bonus_reasons) if bonus_reasons else "Standard match",
         | 
| 317 | 
            +
                                    'info': breed_info,
         | 
| 318 | 
            +
                                    'noise_info': breed_noise_info.get(breed_name, {}),
         | 
| 319 | 
            +
                                    'health_info': breed_health_info.get(breed_name, {})
         | 
| 320 | 
            +
                                })
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                            # 根據最終分數排序
         | 
| 323 | 
            +
                            final_recommendations.sort(key=lambda x: (-x['final_score'], x['breed']))
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                            # 更新排名
         | 
| 326 | 
            +
                            for i, rec in enumerate(final_recommendations, 1):
         | 
| 327 | 
            +
                                rec['rank'] = i
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                            # 保存到歷史記錄
         | 
| 330 | 
            +
                            history_results = [{
         | 
| 331 | 
            +
                                'breed': rec['breed'],
         | 
| 332 | 
            +
                                'rank': rec['rank'],
         | 
| 333 | 
            +
                                'final_score': rec['final_score']
         | 
| 334 | 
            +
                            } for rec in final_recommendations[:10]]
         | 
| 335 | 
            +
             | 
| 336 | 
            +
                            history_component.save_search(
         | 
| 337 | 
            +
                                user_preferences=None,
         | 
| 338 | 
            +
                                results=history_results,
         | 
| 339 | 
            +
                                search_type="description",
         | 
| 340 | 
            +
                                description=description
         | 
| 341 | 
            +
                            )
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                            result = format_recommendation_html(final_recommendations, is_description_search=True)
         | 
| 344 | 
            +
                            return [gr.update(value=result), gr.update(visible=False)]
         | 
| 345 | 
            +
             | 
| 346 | 
            +
                        except Exception as e:
         | 
| 347 | 
            +
                            error_msg = f"Error processing your description. Details: {str(e)}"
         | 
| 348 | 
            +
                            return [gr.update(value=error_msg), gr.update(visible=False)]
         | 
| 349 | 
            +
             | 
| 350 | 
            +
             | 
| 351 | 
            +
                    def _calculate_space_compatibility(size: str, living_space: str) -> float:
         | 
| 352 | 
            +
                        """住宿空間適應性評分"""
         | 
| 353 | 
            +
                        if living_space == "apartment":
         | 
| 354 | 
            +
                            scores = {
         | 
| 355 | 
            +
                                'Tiny': 0.6,         # 公寓可以,但不是最佳
         | 
| 356 | 
            +
                                'Small': 0.8,        # 公寓較好
         | 
| 357 | 
            +
                                'Medium': 1.0,       # 最佳選擇
         | 
| 358 | 
            +
                                'Medium-Large': 0.6, # 可能有點大
         | 
| 359 | 
            +
                                'Large': 0.4,        # 太大了
         | 
| 360 | 
            +
                                'Giant': 0.2        # 不建議
         | 
| 361 | 
            +
                            }
         | 
| 362 | 
            +
                        else:  # house
         | 
| 363 | 
            +
                            scores = {
         | 
| 364 | 
            +
                                'Tiny': 0.4,         # 房子太大了
         | 
| 365 | 
            +
                                'Small': 0.6,        # 可以但不是最佳
         | 
| 366 | 
            +
                                'Medium': 0.8,       # 不錯的選擇
         | 
| 367 | 
            +
                                'Medium-Large': 1.0, # 最佳選擇
         | 
| 368 | 
            +
                                'Large': 0.9,        # 也很好
         | 
| 369 | 
            +
                                'Giant': 0.7         # 可以考慮
         | 
| 370 | 
            +
                            }
         | 
| 371 | 
            +
                        return scores.get(size, 0.5)
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                    def _calculate_exercise_compatibility(exercise_needs: str, exercise_time: int) -> float:
         | 
| 374 | 
            +
                        """運動需求相容性評分"""
         | 
| 375 | 
            +
                        # 轉換運動時間到評分標準
         | 
| 376 | 
            +
                        if exercise_time >= 120:  # 高運動量
         | 
| 377 | 
            +
                            scores = {
         | 
| 378 | 
            +
                                'Very High': 1.0,
         | 
| 379 | 
            +
                                'High': 0.8,
         | 
| 380 | 
            +
                                'Moderate': 0.5,
         | 
| 381 | 
            +
                                'Low': 0.2
         | 
| 382 | 
            +
                            }
         | 
| 383 | 
            +
                        elif exercise_time >= 60:  # 中等運動量
         | 
| 384 | 
            +
                            scores = {
         | 
| 385 | 
            +
                                'Very High': 0.5,
         | 
| 386 | 
            +
                                'High': 0.7,
         | 
| 387 | 
            +
                                'Moderate': 1.0,
         | 
| 388 | 
            +
                                'Low': 0.8
         | 
| 389 | 
            +
                            }
         | 
| 390 | 
            +
                        else:  # 低運動量
         | 
| 391 | 
            +
                            scores = {
         | 
| 392 | 
            +
                                'Very High': 0.2,
         | 
| 393 | 
            +
                                'High': 0.4,
         | 
| 394 | 
            +
                                'Moderate': 0.7,
         | 
| 395 | 
            +
                                'Low': 1.0
         | 
| 396 | 
            +
                            }
         | 
| 397 | 
            +
                        return scores.get(exercise_needs, 0.5)
         | 
| 398 | 
            +
             | 
| 399 | 
            +
                    def _calculate_grooming_compatibility(grooming_needs: str, grooming_commitment: str) -> float:
         | 
| 400 | 
            +
                        """美容需求相容性評分"""
         | 
| 401 | 
            +
                        if grooming_commitment == "high":
         | 
| 402 | 
            +
                            scores = {
         | 
| 403 | 
            +
                                'High': 1.0,
         | 
| 404 | 
            +
                                'Moderate': 0.8,
         | 
| 405 | 
            +
                                'Low': 0.5
         | 
| 406 | 
            +
                            }
         | 
| 407 | 
            +
                        elif grooming_commitment == "medium":
         | 
| 408 | 
            +
                            scores = {
         | 
| 409 | 
            +
                                'High': 0.6,
         | 
| 410 | 
            +
                                'Moderate': 1.0,
         | 
| 411 | 
            +
                                'Low': 0.8
         | 
| 412 | 
            +
                            }
         | 
| 413 | 
            +
                        else:  # low
         | 
| 414 | 
            +
                            scores = {
         | 
| 415 | 
            +
                                'High': 0.3,
         | 
| 416 | 
            +
                                'Moderate': 0.6,
         | 
| 417 | 
            +
                                'Low': 1.0
         | 
| 418 | 
            +
                            }
         | 
| 419 | 
            +
                        return scores.get(grooming_needs, 0.5)
         | 
| 420 | 
            +
             | 
| 421 | 
            +
                    def _calculate_experience_compatibility(care_level: str, experience_level: str) -> float:
         | 
| 422 | 
            +
                        if experience_level == "experienced":
         | 
| 423 | 
            +
                            care_scores = {
         | 
| 424 | 
            +
                                'High': 1.0,
         | 
| 425 | 
            +
                                'Moderate': 0.8,
         | 
| 426 | 
            +
                                'Low': 0.6
         | 
| 427 | 
            +
                            }
         | 
| 428 | 
            +
                        elif experience_level == "intermediate":
         | 
| 429 | 
            +
                            care_scores = {
         | 
| 430 | 
            +
                                'High': 0.6,
         | 
| 431 | 
            +
                                'Moderate': 1.0,
         | 
| 432 | 
            +
                                'Low': 0.8
         | 
| 433 | 
            +
                            }
         | 
| 434 | 
            +
                        else:  # beginner
         | 
| 435 | 
            +
                            care_scores = {
         | 
| 436 | 
            +
                                'High': 0.3,
         | 
| 437 | 
            +
                                'Moderate': 0.7,
         | 
| 438 | 
            +
                                'Low': 1.0
         | 
| 439 | 
            +
                            }
         | 
| 440 | 
            +
                        return care_scores.get(care_level, 0.7)
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                    def show_loading():
         | 
| 443 | 
            +
                        return [gr.update(value=""), gr.update(visible=True)]
         | 
| 444 | 
            +
             | 
| 445 | 
            +
             | 
| 446 | 
            +
                    get_recommendations_btn.click(
         | 
| 447 | 
            +
                        fn=on_find_match_click,
         | 
| 448 | 
            +
                        inputs=[
         | 
| 449 | 
            +
                            living_space,
         | 
| 450 | 
            +
                            exercise_time,
         | 
| 451 | 
            +
                            grooming_commitment,
         | 
| 452 | 
            +
                            experience_level,
         | 
| 453 | 
            +
                            has_children,
         | 
| 454 | 
            +
                            noise_tolerance
         | 
| 455 | 
            +
                        ],
         | 
| 456 | 
            +
                        outputs=recommendation_output
         | 
| 457 | 
            +
                    )
         | 
| 458 | 
            +
             | 
| 459 | 
            +
                    description_search_btn.click(
         | 
| 460 | 
            +
                        fn=show_loading,  # 先顯示加載消息
         | 
| 461 | 
            +
                        outputs=[description_output, loading_msg]
         | 
| 462 | 
            +
                    ).then(  # 然後執行搜索
         | 
| 463 | 
            +
                        fn=on_description_search,
         | 
| 464 | 
            +
                        inputs=[description_input],
         | 
| 465 | 
            +
                        outputs=[description_output, loading_msg]
         | 
| 466 | 
            +
                    )
         | 
| 467 | 
            +
             | 
| 468 | 
            +
                return {
         | 
| 469 | 
            +
                    'living_space': living_space,
         | 
| 470 | 
            +
                    'exercise_time': exercise_time,
         | 
| 471 | 
            +
                    'grooming_commitment': grooming_commitment,
         | 
| 472 | 
            +
                    'experience_level': experience_level,
         | 
| 473 | 
            +
                    'has_children': has_children,
         | 
| 474 | 
            +
                    'noise_tolerance': noise_tolerance,
         | 
| 475 | 
            +
                    'get_recommendations_btn': get_recommendations_btn,
         | 
| 476 | 
            +
                    'recommendation_output': recommendation_output,
         | 
| 477 | 
            +
                    'description_input': description_input,
         | 
| 478 | 
            +
                    'description_search_btn': description_search_btn,
         | 
| 479 | 
            +
                    'description_output': description_output
         | 
| 480 | 
            +
                }
         | 
    	
        recommendation_html_format.py
    ADDED
    
    | @@ -0,0 +1,571 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
             | 
| 2 | 
            +
            from breed_health_info import breed_health_info, default_health_note
         | 
| 3 | 
            +
            from breed_noise_info import breed_noise_info
         | 
| 4 | 
            +
            from dog_database import get_dog_description
         | 
| 5 | 
            +
            from scoring_calculation_system import calculate_compatibility_score
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            def format_recommendation_html(recommendations: List[Dict], is_description_search: bool = False) -> str:
         | 
| 8 | 
            +
                """將推薦結果格式化為HTML"""
         | 
| 9 | 
            +
                def _convert_to_display_score(score: float, score_type: str = None) -> int:
         | 
| 10 | 
            +
                    """
         | 
| 11 | 
            +
                    更改為生成更明顯差異的顯示分數
         | 
| 12 | 
            +
                    """
         | 
| 13 | 
            +
                    try:
         | 
| 14 | 
            +
                        # 基礎分數轉換(保持相對關係但擴大差異)
         | 
| 15 | 
            +
                        if score_type == 'bonus':  # Breed Bonus 使用不同的轉換邏輯
         | 
| 16 | 
            +
                            base_score = 35 + (score * 60)  # 35-95 範圍,差異更大
         | 
| 17 | 
            +
                        else:
         | 
| 18 | 
            +
                            # 其他類型的分數轉換
         | 
| 19 | 
            +
                            if score <= 0.3:
         | 
| 20 | 
            +
                                base_score = 40 + (score * 45)  # 40-53.5 範圍
         | 
| 21 | 
            +
                            elif score <= 0.6:
         | 
| 22 | 
            +
                                base_score = 55 + ((score - 0.3) * 55)  # 55-71.5 範圍
         | 
| 23 | 
            +
                            elif score <= 0.8:
         | 
| 24 | 
            +
                                base_score = 72 + ((score - 0.6) * 60)  # 72-84 範圍
         | 
| 25 | 
            +
                            else:
         | 
| 26 | 
            +
                                base_score = 85 + ((score - 0.8) * 50)  # 85-95 範圍
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                        # 添加不規則的微調,但保持相對關係
         | 
| 29 | 
            +
                        import random
         | 
| 30 | 
            +
                        if score_type == 'bonus':
         | 
| 31 | 
            +
                            adjustment = random.uniform(-2, 2)
         | 
| 32 | 
            +
                        else:
         | 
| 33 | 
            +
                            # 根據分數範圍決定調整幅度
         | 
| 34 | 
            +
                            if score > 0.8:
         | 
| 35 | 
            +
                                adjustment = random.uniform(-3, 3)
         | 
| 36 | 
            +
                            elif score > 0.6:
         | 
| 37 | 
            +
                                adjustment = random.uniform(-4, 4)
         | 
| 38 | 
            +
                            else:
         | 
| 39 | 
            +
                                adjustment = random.uniform(-2, 2)
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                        final_score = base_score + adjustment
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                        # 確保最終分數在合理範圍內並避免5的倍數
         | 
| 44 | 
            +
                        final_score = min(95, max(40, final_score))
         | 
| 45 | 
            +
                        rounded_score = round(final_score)
         | 
| 46 | 
            +
                        if rounded_score % 5 == 0:
         | 
| 47 | 
            +
                            rounded_score += random.choice([-1, 1])
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                        return rounded_score
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                    except Exception as e:
         | 
| 52 | 
            +
                        print(f"Error in convert_to_display_score: {str(e)}")
         | 
| 53 | 
            +
                        return 70
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                def _generate_progress_bar(score: float) -> float:
         | 
| 56 | 
            +
                    """生成非線性的進度條寬度"""
         | 
| 57 | 
            +
                    if score <= 0.3:
         | 
| 58 | 
            +
                        width = 30 + (score / 0.3) * 20
         | 
| 59 | 
            +
                    elif score <= 0.6:
         | 
| 60 | 
            +
                        width = 50 + ((score - 0.3) / 0.3) * 20
         | 
| 61 | 
            +
                    elif score <= 0.8:
         | 
| 62 | 
            +
                        width = 70 + ((score - 0.6) / 0.2) * 15
         | 
| 63 | 
            +
                    else:
         | 
| 64 | 
            +
                        width = 85 + ((score - 0.8) / 0.2) * 15
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                    import random
         | 
| 67 | 
            +
                    width += random.uniform(-2, 2)
         | 
| 68 | 
            +
                    return min(100, max(20, width))
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                html_content = "<div class='recommendations-container'>"
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                for rec in recommendations:
         | 
| 73 | 
            +
                    breed = rec['breed']
         | 
| 74 | 
            +
                    scores = rec['scores']
         | 
| 75 | 
            +
                    info = rec['info']
         | 
| 76 | 
            +
                    rank = rec.get('rank', 0)
         | 
| 77 | 
            +
                    final_score = rec.get('final_score', scores['overall'])
         | 
| 78 | 
            +
                    bonus_score = rec.get('bonus_score', 0)
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                    if is_description_search:
         | 
| 81 | 
            +
                        display_scores = {
         | 
| 82 | 
            +
                            'space': _convert_to_display_score(scores['space'], 'space'),
         | 
| 83 | 
            +
                            'exercise': _convert_to_display_score(scores['exercise'], 'exercise'),
         | 
| 84 | 
            +
                            'grooming': _convert_to_display_score(scores['grooming'], 'grooming'),
         | 
| 85 | 
            +
                            'experience': _convert_to_display_score(scores['experience'], 'experience'),
         | 
| 86 | 
            +
                            'noise': _convert_to_display_score(scores['noise'], 'noise')
         | 
| 87 | 
            +
                        }
         | 
| 88 | 
            +
                    else:
         | 
| 89 | 
            +
                        display_scores = scores  # 圖片識別使用原始分數
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                    progress_bars = {
         | 
| 92 | 
            +
                        'space': _generate_progress_bar(scores['space']),
         | 
| 93 | 
            +
                        'exercise': _generate_progress_bar(scores['exercise']),
         | 
| 94 | 
            +
                        'grooming': _generate_progress_bar(scores['grooming']),
         | 
| 95 | 
            +
                        'experience': _generate_progress_bar(scores['experience']),
         | 
| 96 | 
            +
                        'noise': _generate_progress_bar(scores['noise'])
         | 
| 97 | 
            +
                    }
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                    health_info = breed_health_info.get(breed, {"health_notes": default_health_note})
         | 
| 100 | 
            +
                    noise_info = breed_noise_info.get(breed, {
         | 
| 101 | 
            +
                        "noise_notes": "Noise information not available",
         | 
| 102 | 
            +
                        "noise_level": "Unknown",
         | 
| 103 | 
            +
                        "source": "N/A"
         | 
| 104 | 
            +
                    })
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    # 解析噪音資訊
         | 
| 107 | 
            +
                    noise_notes = noise_info.get('noise_notes', '').split('\n')
         | 
| 108 | 
            +
                    noise_characteristics = []
         | 
| 109 | 
            +
                    barking_triggers = []
         | 
| 110 | 
            +
                    noise_level = ''
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                    current_section = None
         | 
| 113 | 
            +
                    for line in noise_notes:
         | 
| 114 | 
            +
                        line = line.strip()
         | 
| 115 | 
            +
                        if 'Typical noise characteristics:' in line:
         | 
| 116 | 
            +
                            current_section = 'characteristics'
         | 
| 117 | 
            +
                        elif 'Noise level:' in line:
         | 
| 118 | 
            +
                            noise_level = line.replace('Noise level:', '').strip()
         | 
| 119 | 
            +
                        elif 'Barking triggers:' in line:
         | 
| 120 | 
            +
                            current_section = 'triggers'
         | 
| 121 | 
            +
                        elif line.startswith('•'):
         | 
| 122 | 
            +
                            if current_section == 'characteristics':
         | 
| 123 | 
            +
                                noise_characteristics.append(line[1:].strip())
         | 
| 124 | 
            +
                            elif current_section == 'triggers':
         | 
| 125 | 
            +
                                barking_triggers.append(line[1:].strip())
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                    # 生成特徵和觸發因素的HTML
         | 
| 128 | 
            +
                    noise_characteristics_html = '\n'.join([f'<li>{item}</li>' for item in noise_characteristics])
         | 
| 129 | 
            +
                    barking_triggers_html = '\n'.join([f'<li>{item}</li>' for item in barking_triggers])
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                    # 處理健康資訊
         | 
| 132 | 
            +
                    health_notes = health_info.get('health_notes', '').split('\n')
         | 
| 133 | 
            +
                    health_considerations = []
         | 
| 134 | 
            +
                    health_screenings = []
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                    current_section = None
         | 
| 137 | 
            +
                    for line in health_notes:
         | 
| 138 | 
            +
                        line = line.strip()
         | 
| 139 | 
            +
                        if 'Common breed-specific health considerations' in line:
         | 
| 140 | 
            +
                            current_section = 'considerations'
         | 
| 141 | 
            +
                        elif 'Recommended health screenings:' in line:
         | 
| 142 | 
            +
                            current_section = 'screenings'
         | 
| 143 | 
            +
                        elif line.startswith('•'):
         | 
| 144 | 
            +
                            if current_section == 'considerations':
         | 
| 145 | 
            +
                                health_considerations.append(line[1:].strip())
         | 
| 146 | 
            +
                            elif current_section == 'screenings':
         | 
| 147 | 
            +
                                health_screenings.append(line[1:].strip())
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                    health_considerations_html = '\n'.join([f'<li>{item}</li>' for item in health_considerations])
         | 
| 150 | 
            +
                    health_screenings_html = '\n'.join([f'<li>{item}</li>' for item in health_screenings])
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                    # 獎勵原因計算
         | 
| 153 | 
            +
                    bonus_reasons = []
         | 
| 154 | 
            +
                    temperament = info.get('Temperament', '').lower()
         | 
| 155 | 
            +
                    if any(trait in temperament for trait in ['friendly', 'gentle', 'affectionate']):
         | 
| 156 | 
            +
                        bonus_reasons.append("Positive temperament traits")
         | 
| 157 | 
            +
                    if info.get('Good with Children') == 'Yes':
         | 
| 158 | 
            +
                        bonus_reasons.append("Excellent with children")
         | 
| 159 | 
            +
                    try:
         | 
| 160 | 
            +
                        lifespan = info.get('Lifespan', '10-12 years')
         | 
| 161 | 
            +
                        years = int(lifespan.split('-')[0])
         | 
| 162 | 
            +
                        if years > 12:
         | 
| 163 | 
            +
                            bonus_reasons.append("Above-average lifespan")
         | 
| 164 | 
            +
                    except:
         | 
| 165 | 
            +
                        pass
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                    html_content += f"""
         | 
| 168 | 
            +
                    <div class="dog-info-card recommendation-card">
         | 
| 169 | 
            +
                        <div class="breed-info">
         | 
| 170 | 
            +
                            <h2 class="section-title">
         | 
| 171 | 
            +
                                <span class="icon">🏆</span> #{rank} {breed.replace('_', ' ')}
         | 
| 172 | 
            +
                                <span class="score-badge">
         | 
| 173 | 
            +
                                    Overall Match: {final_score*100:.1f}%
         | 
| 174 | 
            +
                                </span>
         | 
| 175 | 
            +
                            </h2>
         | 
| 176 | 
            +
                            <div class="compatibility-scores">
         | 
| 177 | 
            +
                                <div class="score-item">
         | 
| 178 | 
            +
                                    <span class="label">Space Compatibility:</span>
         | 
| 179 | 
            +
                                    <div class="progress-bar">
         | 
| 180 | 
            +
                                        <div class="progress" style="width: {progress_bars['space']}%"></div>
         | 
| 181 | 
            +
                                    </div>
         | 
| 182 | 
            +
                                    <span class="percentage">{display_scores['space'] if is_description_search else scores['space']*100:.1f}%</span>
         | 
| 183 | 
            +
                                </div>
         | 
| 184 | 
            +
                                <div class="score-item">
         | 
| 185 | 
            +
                                    <span class="label">Exercise Match:</span>
         | 
| 186 | 
            +
                                    <div class="progress-bar">
         | 
| 187 | 
            +
                                        <div class="progress" style="width: {progress_bars['exercise']}%"></div>
         | 
| 188 | 
            +
                                    </div>
         | 
| 189 | 
            +
                                    <span class="percentage">{display_scores['exercise'] if is_description_search else scores['exercise']*100:.1f}%</span>
         | 
| 190 | 
            +
                                </div>
         | 
| 191 | 
            +
                                <div class="score-item">
         | 
| 192 | 
            +
                                    <span class="label">Grooming Match:</span>
         | 
| 193 | 
            +
                                    <div class="progress-bar">
         | 
| 194 | 
            +
                                        <div class="progress" style="width: {progress_bars['grooming']}%"></div>
         | 
| 195 | 
            +
                                    </div>
         | 
| 196 | 
            +
                                    <span class="percentage">{display_scores['grooming'] if is_description_search else scores['grooming']*100:.1f}%</span>
         | 
| 197 | 
            +
                                </div>
         | 
| 198 | 
            +
                                <div class="score-item">
         | 
| 199 | 
            +
                                    <span class="label">Experience Match:</span>
         | 
| 200 | 
            +
                                    <div class="progress-bar">
         | 
| 201 | 
            +
                                        <div class="progress" style="width: {progress_bars['experience']}%"></div>
         | 
| 202 | 
            +
                                    </div>
         | 
| 203 | 
            +
                                    <span class="percentage">{display_scores['experience'] if is_description_search else scores['experience']*100:.1f}%</span>
         | 
| 204 | 
            +
                                </div>
         | 
| 205 | 
            +
                                <div class="score-item">
         | 
| 206 | 
            +
                                    <span class="label">
         | 
| 207 | 
            +
                                        Noise Compatibility:
         | 
| 208 | 
            +
                                        <span class="tooltip">
         | 
| 209 | 
            +
                                            <span class="tooltip-icon">ⓘ</span>
         | 
| 210 | 
            +
                                            <span class="tooltip-text">
         | 
| 211 | 
            +
                                                <strong>Noise Compatibility Score:</strong><br>
         | 
| 212 | 
            +
                                                • Based on your noise tolerance preference<br>
         | 
| 213 | 
            +
                                                • Considers breed's typical noise level<br>
         | 
| 214 | 
            +
                                                • Accounts for living environment
         | 
| 215 | 
            +
                                            </span>
         | 
| 216 | 
            +
                                        </span>
         | 
| 217 | 
            +
                                    </span>
         | 
| 218 | 
            +
                                    <div class="progress-bar">
         | 
| 219 | 
            +
                                        <div class="progress" style="width: {progress_bars['noise']}%"></div>
         | 
| 220 | 
            +
                                    </div>
         | 
| 221 | 
            +
                                    <span class="percentage">{display_scores['noise'] if is_description_search else scores['noise']*100:.1f}%</span>
         | 
| 222 | 
            +
                                </div>
         | 
| 223 | 
            +
                                {f'''
         | 
| 224 | 
            +
                                <div class="score-item bonus-score">
         | 
| 225 | 
            +
                                    <span class="label">
         | 
| 226 | 
            +
                                        Breed Bonus:
         | 
| 227 | 
            +
                                        <span class="tooltip">
         | 
| 228 | 
            +
                                            <span class="tooltip-icon">ⓘ</span>
         | 
| 229 | 
            +
                                            <span class="tooltip-text">
         | 
| 230 | 
            +
                                                <strong>Breed Bonus Points:</strong><br>
         | 
| 231 | 
            +
                                                • {('<br>• '.join(bonus_reasons)) if bonus_reasons else 'No additional bonus points'}<br>
         | 
| 232 | 
            +
                                                <br>
         | 
| 233 | 
            +
                                                <strong>Bonus Factors Include:</strong><br>
         | 
| 234 | 
            +
                                                • Friendly temperament<br>
         | 
| 235 | 
            +
                                                • Child compatibility<br>
         | 
| 236 | 
            +
                                                • Longer lifespan<br>
         | 
| 237 | 
            +
                                                • Living space adaptability
         | 
| 238 | 
            +
                                            </span>
         | 
| 239 | 
            +
                                        </span>
         | 
| 240 | 
            +
                                    </span>
         | 
| 241 | 
            +
                                    <div class="progress-bar">
         | 
| 242 | 
            +
                                        <div class="progress" style="width: {progress_bars.get('bonus', bonus_score*100)}%"></div>
         | 
| 243 | 
            +
                                    </div>
         | 
| 244 | 
            +
                                    <span class="percentage">{bonus_score*100:.1f}%</span>
         | 
| 245 | 
            +
                                </div>
         | 
| 246 | 
            +
                                ''' if bonus_score > 0 else ''}
         | 
| 247 | 
            +
                            </div>
         | 
| 248 | 
            +
                            <div class="breed-details-section">
         | 
| 249 | 
            +
                                <h3 class="subsection-title">
         | 
| 250 | 
            +
                                    <span class="icon">📋</span> Breed Details
         | 
| 251 | 
            +
                                </h3>
         | 
| 252 | 
            +
                                <div class="details-grid">
         | 
| 253 | 
            +
                                    <div class="detail-item">
         | 
| 254 | 
            +
                                        <span class="tooltip">
         | 
| 255 | 
            +
                                            <span class="icon">📏</span>
         | 
| 256 | 
            +
                                            <span class="label">Size:</span>
         | 
| 257 | 
            +
                                            <span class="tooltip-icon">ⓘ</span>
         | 
| 258 | 
            +
                                            <span class="tooltip-text">
         | 
| 259 | 
            +
                                                <strong>Size Categories:</strong><br>
         | 
| 260 | 
            +
                                                • Small: Under 20 pounds<br>
         | 
| 261 | 
            +
                                                • Medium: 20-60 pounds<br>
         | 
| 262 | 
            +
                                                • Large: Over 60 pounds
         | 
| 263 | 
            +
                                            </span>
         | 
| 264 | 
            +
                                            <span class="value">{info['Size']}</span>
         | 
| 265 | 
            +
                                        </span>
         | 
| 266 | 
            +
                                    </div>
         | 
| 267 | 
            +
                                    <div class="detail-item">
         | 
| 268 | 
            +
                                        <span class="tooltip">
         | 
| 269 | 
            +
                                            <span class="icon">🏃</span>
         | 
| 270 | 
            +
                                            <span class="label">Exercise Needs:</span>
         | 
| 271 | 
            +
                                            <span class="tooltip-icon">ⓘ</span>
         | 
| 272 | 
            +
                                            <span class="tooltip-text">
         | 
| 273 | 
            +
                                                <strong>Exercise Needs:</strong><br>
         | 
| 274 | 
            +
                                                • Low: Short walks<br>
         | 
| 275 | 
            +
                                                • Moderate: 1-2 hours daily<br>
         | 
| 276 | 
            +
                                                • High: 2+ hours daily<br>
         | 
| 277 | 
            +
                                                • Very High: Constant activity
         | 
| 278 | 
            +
                                            </span>
         | 
| 279 | 
            +
                                            <span class="value">{info['Exercise Needs']}</span>
         | 
| 280 | 
            +
                                        </span>
         | 
| 281 | 
            +
                                    </div>
         | 
| 282 | 
            +
                                    <div class="detail-item">
         | 
| 283 | 
            +
                                        <span class="tooltip">
         | 
| 284 | 
            +
                                            <span class="icon">👨👩👧👦</span>
         | 
| 285 | 
            +
                                            <span class="label">Good with Children:</span>
         | 
| 286 | 
            +
                                            <span class="tooltip-icon">ⓘ</span>
         | 
| 287 | 
            +
                                            <span class="tooltip-text">
         | 
| 288 | 
            +
                                                <strong>Child Compatibility:</strong><br>
         | 
| 289 | 
            +
                                                • Yes: Excellent with kids<br>
         | 
| 290 | 
            +
                                                • Moderate: Good with older children<br>
         | 
| 291 | 
            +
                                                • No: Better for adult households
         | 
| 292 | 
            +
                                            </span>
         | 
| 293 | 
            +
                                            <span class="value">{info['Good with Children']}</span>
         | 
| 294 | 
            +
                                        </span>
         | 
| 295 | 
            +
                                    </div>
         | 
| 296 | 
            +
                                    <div class="detail-item">
         | 
| 297 | 
            +
                                        <span class="tooltip">
         | 
| 298 | 
            +
                                            <span class="icon">⏳</span>
         | 
| 299 | 
            +
                                            <span class="label">Lifespan:</span>
         | 
| 300 | 
            +
                                            <span class="tooltip-icon">ⓘ</span>
         | 
| 301 | 
            +
                                            <span class="tooltip-text">
         | 
| 302 | 
            +
                                                <strong>Average Lifespan:</strong><br>
         | 
| 303 | 
            +
                                                • Short: 6-8 years<br>
         | 
| 304 | 
            +
                                                • Average: 10-15 years<br>
         | 
| 305 | 
            +
                                                • Long: 12-20 years<br>
         | 
| 306 | 
            +
                                                • Varies by size: Larger breeds typically have shorter lifespans
         | 
| 307 | 
            +
                                            </span>
         | 
| 308 | 
            +
                                        </span>
         | 
| 309 | 
            +
                                        <span class="value">{info['Lifespan']}</span>
         | 
| 310 | 
            +
                                    </div>
         | 
| 311 | 
            +
                                </div>
         | 
| 312 | 
            +
                            </div>
         | 
| 313 | 
            +
                            <div class="description-section">
         | 
| 314 | 
            +
                                <h3 class="subsection-title">
         | 
| 315 | 
            +
                                    <span class="icon">📝</span> Description
         | 
| 316 | 
            +
                                </h3>
         | 
| 317 | 
            +
                                <p class="description-text">{info.get('Description', '')}</p>
         | 
| 318 | 
            +
                            </div>
         | 
| 319 | 
            +
                            <div class="noise-section">
         | 
| 320 | 
            +
                                <h3 class="section-header">
         | 
| 321 | 
            +
                                    <span class="icon">🔊</span> Noise Behavior
         | 
| 322 | 
            +
                                    <span class="tooltip">
         | 
| 323 | 
            +
                                        <span class="tooltip-icon">ⓘ</span>
         | 
| 324 | 
            +
                                        <span class="tooltip-text">
         | 
| 325 | 
            +
                                            <strong>Noise Behavior:</strong><br>
         | 
| 326 | 
            +
                                            • Typical vocalization patterns<br>
         | 
| 327 | 
            +
                                            • Common triggers and frequency<br>
         | 
| 328 | 
            +
                                            • Based on breed characteristics
         | 
| 329 | 
            +
                                        </span>
         | 
| 330 | 
            +
                                    </span>
         | 
| 331 | 
            +
                                </h3>
         | 
| 332 | 
            +
                                <div class="noise-info">
         | 
| 333 | 
            +
                                    <div class="noise-details">
         | 
| 334 | 
            +
                                        <h4 class="section-header">Typical noise characteristics:</h4>
         | 
| 335 | 
            +
                                        <div class="characteristics-list">
         | 
| 336 | 
            +
                                            <div class="list-item">Moderate to high barker</div>
         | 
| 337 | 
            +
                                            <div class="list-item">Alert watch dog</div>
         | 
| 338 | 
            +
                                            <div class="list-item">Attention-seeking barks</div>
         | 
| 339 | 
            +
                                            <div class="list-item">Social vocalizations</div>
         | 
| 340 | 
            +
                                        </div>
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                                        <div class="noise-level-display">
         | 
| 343 | 
            +
                                            <h4 class="section-header">Noise level:</h4>
         | 
| 344 | 
            +
                                            <div class="level-indicator">
         | 
| 345 | 
            +
                                                <span class="level-text">Moderate-High</span>
         | 
| 346 | 
            +
                                                <div class="level-bars">
         | 
| 347 | 
            +
                                                    <span class="bar"></span>
         | 
| 348 | 
            +
                                                    <span class="bar"></span>
         | 
| 349 | 
            +
                                                    <span class="bar"></span>
         | 
| 350 | 
            +
                                                </div>
         | 
| 351 | 
            +
                                            </div>
         | 
| 352 | 
            +
                                        </div>
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                                        <h4 class="section-header">Barking triggers:</h4>
         | 
| 355 | 
            +
                                        <div class="triggers-list">
         | 
| 356 | 
            +
                                            <div class="list-item">Separation anxiety</div>
         | 
| 357 | 
            +
                                            <div class="list-item">Attention needs</div>
         | 
| 358 | 
            +
                                            <div class="list-item">Strange noises</div>
         | 
| 359 | 
            +
                                            <div class="list-item">Excitement</div>
         | 
| 360 | 
            +
                                        </div>
         | 
| 361 | 
            +
                                    </div>
         | 
| 362 | 
            +
                                    <div class="noise-disclaimer">
         | 
| 363 | 
            +
                                        <p class="disclaimer-text source-text">Source: Compiled from various breed behavior resources, 2024</p>
         | 
| 364 | 
            +
                                        <p class="disclaimer-text">Individual dogs may vary in their vocalization patterns.</p>
         | 
| 365 | 
            +
                                        <p class="disclaimer-text">Training can significantly influence barking behavior.</p>
         | 
| 366 | 
            +
                                        <p class="disclaimer-text">Environmental factors may affect noise levels.</p>
         | 
| 367 | 
            +
                                    </div>
         | 
| 368 | 
            +
                                </div>
         | 
| 369 | 
            +
                            </div>
         | 
| 370 | 
            +
             | 
| 371 | 
            +
                            <div class="health-section">
         | 
| 372 | 
            +
                                <h3 class="section-header">
         | 
| 373 | 
            +
                                    <span class="icon">🏥</span> Health Insights
         | 
| 374 | 
            +
                                    <span class="tooltip">
         | 
| 375 | 
            +
                                        <span class="tooltip-icon">ⓘ</span>
         | 
| 376 | 
            +
                                        <span class="tooltip-text">
         | 
| 377 | 
            +
                                            Health information is compiled from multiple sources including veterinary resources, breed guides, and international canine health databases.
         | 
| 378 | 
            +
                                            Each dog is unique and may vary from these general guidelines.
         | 
| 379 | 
            +
                                        </span>
         | 
| 380 | 
            +
                                    </span>
         | 
| 381 | 
            +
                                </h3>
         | 
| 382 | 
            +
                                <div class="health-info">
         | 
| 383 | 
            +
                                    <div class="health-details">
         | 
| 384 | 
            +
                                        <div class="health-block">
         | 
| 385 | 
            +
                                            <h4 class="section-header">Common breed-specific health considerations:</h4>
         | 
| 386 | 
            +
                                            <div class="health-grid">
         | 
| 387 | 
            +
                                                <div class="health-item">Patellar luxation</div>
         | 
| 388 | 
            +
                                                <div class="health-item">Progressive retinal atrophy</div>
         | 
| 389 | 
            +
                                                <div class="health-item">Von Willebrand's disease</div>
         | 
| 390 | 
            +
                                                <div class="health-item">Open fontanel</div>
         | 
| 391 | 
            +
                                            </div>
         | 
| 392 | 
            +
                                        </div>
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                                        <div class="health-block">
         | 
| 395 | 
            +
                                            <h4 class="section-header">Recommended health screenings:</h4>
         | 
| 396 | 
            +
                                            <div class="health-grid">
         | 
| 397 | 
            +
                                                <div class="health-item screening">Patella evaluation</div>
         | 
| 398 | 
            +
                                                <div class="health-item screening">Eye examination</div>
         | 
| 399 | 
            +
                                                <div class="health-item screening">Blood clotting tests</div>
         | 
| 400 | 
            +
                                                <div class="health-item screening">Skull development monitoring</div>
         | 
| 401 | 
            +
                                            </div>
         | 
| 402 | 
            +
                                        </div>
         | 
| 403 | 
            +
                                    </div>
         | 
| 404 | 
            +
                                    <div class="health-disclaimer">
         | 
| 405 | 
            +
                                        <p class="disclaimer-text source-text">Source: Compiled from various veterinary and breed information resources, 2024</p>
         | 
| 406 | 
            +
                                        <p class="disclaimer-text">This information is for reference only and based on breed tendencies.</p>
         | 
| 407 | 
            +
                                        <p class="disclaimer-text">Each dog is unique and may not develop any or all of these conditions.</p>
         | 
| 408 | 
            +
                                        <p class="disclaimer-text">Always consult with qualified veterinarians for professional advice.</p>
         | 
| 409 | 
            +
                                    </div>
         | 
| 410 | 
            +
                                </div>
         | 
| 411 | 
            +
                            </div>
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                            <div class="action-section">
         | 
| 414 | 
            +
                                <a href="https://www.akc.org/dog-breeds/{breed.lower().replace('_', '-')}/"
         | 
| 415 | 
            +
                                   target="_blank"
         | 
| 416 | 
            +
                                   class="akc-button">
         | 
| 417 | 
            +
                                    <span class="icon">🌐</span>
         | 
| 418 | 
            +
                                    Learn more about {breed.replace('_', ' ')} on AKC website
         | 
| 419 | 
            +
                                </a>
         | 
| 420 | 
            +
                            </div>
         | 
| 421 | 
            +
                        </div>
         | 
| 422 | 
            +
                    </div>
         | 
| 423 | 
            +
                    """
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                html_content += "</div>"
         | 
| 426 | 
            +
                return html_content
         | 
| 427 | 
            +
             | 
| 428 | 
            +
            def get_breed_recommendations(user_prefs: UserPreferences, top_n: int = 10) -> List[Dict]:
         | 
| 429 | 
            +
                """基於使用者偏好推薦狗品種,確保正確的分數排序"""
         | 
| 430 | 
            +
                print("Starting get_breed_recommendations")
         | 
| 431 | 
            +
                recommendations = []
         | 
| 432 | 
            +
                seen_breeds = set()
         | 
| 433 | 
            +
             | 
| 434 | 
            +
                try:
         | 
| 435 | 
            +
                    # 獲取所有品種
         | 
| 436 | 
            +
                    conn = sqlite3.connect('animal_detector.db')
         | 
| 437 | 
            +
                    cursor = conn.cursor()
         | 
| 438 | 
            +
                    cursor.execute("SELECT Breed FROM AnimalCatalog")
         | 
| 439 | 
            +
                    all_breeds = cursor.fetchall()
         | 
| 440 | 
            +
                    conn.close()
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                    # 收集所有品種的分數
         | 
| 443 | 
            +
                    for breed_tuple in all_breeds:
         | 
| 444 | 
            +
                        breed = breed_tuple[0]
         | 
| 445 | 
            +
                        base_breed = breed.split('(')[0].strip()
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                        if base_breed in seen_breeds:
         | 
| 448 | 
            +
                            continue
         | 
| 449 | 
            +
                        seen_breeds.add(base_breed)
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                        # 獲取品種資訊
         | 
| 452 | 
            +
                        breed_info = get_dog_description(breed)
         | 
| 453 | 
            +
                        if not isinstance(breed_info, dict):
         | 
| 454 | 
            +
                            continue
         | 
| 455 | 
            +
             | 
| 456 | 
            +
                        # 獲取噪音資訊
         | 
| 457 | 
            +
                        noise_info = breed_noise_info.get(breed, {
         | 
| 458 | 
            +
                            "noise_notes": "Noise information not available",
         | 
| 459 | 
            +
                            "noise_level": "Unknown",
         | 
| 460 | 
            +
                            "source": "N/A"
         | 
| 461 | 
            +
                        })
         | 
| 462 | 
            +
             | 
| 463 | 
            +
                        # 將噪音資訊整合到品種資訊中
         | 
| 464 | 
            +
                        breed_info['noise_info'] = noise_info
         | 
| 465 | 
            +
             | 
| 466 | 
            +
                        # 計算基礎相容性分數
         | 
| 467 | 
            +
                        compatibility_scores = calculate_compatibility_score(breed_info, user_prefs)
         | 
| 468 | 
            +
             | 
| 469 | 
            +
                        # 計算品種特定加分
         | 
| 470 | 
            +
                        breed_bonus = 0.0
         | 
| 471 | 
            +
             | 
| 472 | 
            +
                        # 壽命加分
         | 
| 473 | 
            +
                        try:
         | 
| 474 | 
            +
                            lifespan = breed_info.get('Lifespan', '10-12 years')
         | 
| 475 | 
            +
                            years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
         | 
| 476 | 
            +
                            longevity_bonus = min(0.02, (max(years) - 10) * 0.005)
         | 
| 477 | 
            +
                            breed_bonus += longevity_bonus
         | 
| 478 | 
            +
                        except:
         | 
| 479 | 
            +
                            pass
         | 
| 480 | 
            +
             | 
| 481 | 
            +
                        # 性格特徵加分
         | 
| 482 | 
            +
                        temperament = breed_info.get('Temperament', '').lower()
         | 
| 483 | 
            +
                        positive_traits = ['friendly', 'gentle', 'affectionate', 'intelligent']
         | 
| 484 | 
            +
                        negative_traits = ['aggressive', 'stubborn', 'dominant']
         | 
| 485 | 
            +
             | 
| 486 | 
            +
                        breed_bonus += sum(0.01 for trait in positive_traits if trait in temperament)
         | 
| 487 | 
            +
                        breed_bonus -= sum(0.01 for trait in negative_traits if trait in temperament)
         | 
| 488 | 
            +
             | 
| 489 | 
            +
                        # 與孩童相容性加分
         | 
| 490 | 
            +
                        if user_prefs.has_children:
         | 
| 491 | 
            +
                            if breed_info.get('Good with Children') == 'Yes':
         | 
| 492 | 
            +
                                breed_bonus += 0.02
         | 
| 493 | 
            +
                            elif breed_info.get('Good with Children') == 'No':
         | 
| 494 | 
            +
                                breed_bonus -= 0.03
         | 
| 495 | 
            +
             | 
| 496 | 
            +
                        # 噪音相關加分
         | 
| 497 | 
            +
                        if user_prefs.noise_tolerance == 'low':
         | 
| 498 | 
            +
                            if noise_info['noise_level'].lower() == 'high':
         | 
| 499 | 
            +
                                breed_bonus -= 0.03
         | 
| 500 | 
            +
                            elif noise_info['noise_level'].lower() == 'low':
         | 
| 501 | 
            +
                                breed_bonus += 0.02
         | 
| 502 | 
            +
                        elif user_prefs.noise_tolerance == 'high':
         | 
| 503 | 
            +
                            if noise_info['noise_level'].lower() == 'high':
         | 
| 504 | 
            +
                                breed_bonus += 0.01
         | 
| 505 | 
            +
             | 
| 506 | 
            +
                        # 計算最終分數
         | 
| 507 | 
            +
                        breed_bonus = round(breed_bonus, 4)
         | 
| 508 | 
            +
                        final_score = round(compatibility_scores['overall'] + breed_bonus, 4)
         | 
| 509 | 
            +
             | 
| 510 | 
            +
                        recommendations.append({
         | 
| 511 | 
            +
                            'breed': breed,
         | 
| 512 | 
            +
                            'base_score': round(compatibility_scores['overall'], 4),
         | 
| 513 | 
            +
                            'bonus_score': round(breed_bonus, 4),
         | 
| 514 | 
            +
                            'final_score': final_score,
         | 
| 515 | 
            +
                            'scores': compatibility_scores,
         | 
| 516 | 
            +
                            'info': breed_info,
         | 
| 517 | 
            +
                            'noise_info': noise_info  # 添加噪音資訊到推薦結果
         | 
| 518 | 
            +
                        })
         | 
| 519 | 
            +
                    # 嚴格按照 final_score 排序
         | 
| 520 | 
            +
                    recommendations.sort(key=lambda x: (round(-x['final_score'], 4), x['breed'] ))  # 負號使其降序排列,並確保4位小數
         | 
| 521 | 
            +
             | 
| 522 | 
            +
                    # 選擇前N名並確保正確排序
         | 
| 523 | 
            +
                    final_recommendations = []
         | 
| 524 | 
            +
                    last_score = None
         | 
| 525 | 
            +
                    rank = 1
         | 
| 526 | 
            +
             | 
| 527 | 
            +
                    for rec in recommendations:
         | 
| 528 | 
            +
                        if len(final_recommendations) >= top_n:
         | 
| 529 | 
            +
                            break
         | 
| 530 | 
            +
             | 
| 531 | 
            +
                        current_score = rec['final_score']
         | 
| 532 | 
            +
             | 
| 533 | 
            +
                        # 確保分數遞減
         | 
| 534 | 
            +
                        if last_score is not None and current_score > last_score:
         | 
| 535 | 
            +
                            continue
         | 
| 536 | 
            +
             | 
| 537 | 
            +
                        # 添加排名資訊
         | 
| 538 | 
            +
                        rec['rank'] = rank
         | 
| 539 | 
            +
                        final_recommendations.append(rec)
         | 
| 540 | 
            +
             | 
| 541 | 
            +
                        last_score = current_score
         | 
| 542 | 
            +
                        rank += 1
         | 
| 543 | 
            +
             | 
| 544 | 
            +
                    # 驗證最終排序
         | 
| 545 | 
            +
                    for i in range(len(final_recommendations)-1):
         | 
| 546 | 
            +
                        current = final_recommendations[i]
         | 
| 547 | 
            +
                        next_rec = final_recommendations[i+1]
         | 
| 548 | 
            +
             | 
| 549 | 
            +
                        if current['final_score'] < next_rec['final_score']:
         | 
| 550 | 
            +
                            print(f"Warning: Sorting error detected!")
         | 
| 551 | 
            +
                            print(f"#{i+1} {current['breed']}: {current['final_score']}")
         | 
| 552 | 
            +
                            print(f"#{i+2} {next_rec['breed']}: {next_rec['final_score']}")
         | 
| 553 | 
            +
             | 
| 554 | 
            +
                            # 交換位置
         | 
| 555 | 
            +
                            final_recommendations[i], final_recommendations[i+1] = \
         | 
| 556 | 
            +
                                final_recommendations[i+1], final_recommendations[i]
         | 
| 557 | 
            +
             | 
| 558 | 
            +
                    # 打印最終結果以供驗證
         | 
| 559 | 
            +
                    print("\nFinal Rankings:")
         | 
| 560 | 
            +
                    for rec in final_recommendations:
         | 
| 561 | 
            +
                        print(f"#{rec['rank']} {rec['breed']}")
         | 
| 562 | 
            +
                        print(f"Base Score: {rec['base_score']:.4f}")
         | 
| 563 | 
            +
                        print(f"Bonus: {rec['bonus_score']:.4f}")
         | 
| 564 | 
            +
                        print(f"Final Score: {rec['final_score']:.4f}\n")
         | 
| 565 | 
            +
             | 
| 566 | 
            +
                    return final_recommendations
         | 
| 567 | 
            +
             | 
| 568 | 
            +
                except Exception as e:
         | 
| 569 | 
            +
                    print(f"Error in get_breed_recommendations: {str(e)}")
         | 
| 570 | 
            +
                    print(f"Traceback: {traceback.format_exc()}")
         | 
| 571 | 
            +
                    return []
         | 
    	
        smart_breed_matcher.py
    ADDED
    
    | @@ -0,0 +1,962 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            import re
         | 
| 3 | 
            +
            import numpy as np
         | 
| 4 | 
            +
            from typing import List, Dict, Tuple, Optional
         | 
| 5 | 
            +
            from dataclasses import dataclass
         | 
| 6 | 
            +
            from breed_health_info import breed_health_info
         | 
| 7 | 
            +
            from breed_noise_info import breed_noise_info
         | 
| 8 | 
            +
            from dog_database import dog_data
         | 
| 9 | 
            +
            from scoring_calculation_system import UserPreferences
         | 
| 10 | 
            +
            from sentence_transformers import SentenceTransformer, util
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            class SmartBreedMatcher:
         | 
| 13 | 
            +
                def __init__(self, dog_data: List[Tuple]):
         | 
| 14 | 
            +
                    self.dog_data = dog_data
         | 
| 15 | 
            +
                    self.model = SentenceTransformer('all-mpnet-base-v2')
         | 
| 16 | 
            +
                    self._embedding_cache = {}
         | 
| 17 | 
            +
                    self._clear_cache()
         | 
| 18 | 
            +
             | 
| 19 | 
            +
                def _clear_cache(self):
         | 
| 20 | 
            +
                    self._embedding_cache = {}
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
                def _get_cached_embedding(self, text: str) -> torch.Tensor:
         | 
| 24 | 
            +
                    if text not in self._embedding_cache:
         | 
| 25 | 
            +
                        self._embedding_cache[text] = self.model.encode(text)
         | 
| 26 | 
            +
                    return self._embedding_cache[text]
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                def _categorize_breeds(self) -> Dict:
         | 
| 29 | 
            +
                    """自動將狗品種分類"""
         | 
| 30 | 
            +
                    categories = {
         | 
| 31 | 
            +
                        'working_dogs': [],
         | 
| 32 | 
            +
                        'herding_dogs': [],
         | 
| 33 | 
            +
                        'hunting_dogs': [],
         | 
| 34 | 
            +
                        'companion_dogs': [],
         | 
| 35 | 
            +
                        'guard_dogs': []
         | 
| 36 | 
            +
                    }
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                    for breed_info in self.dog_data:
         | 
| 39 | 
            +
                        description = breed_info[9].lower()
         | 
| 40 | 
            +
                        temperament = breed_info[4].lower()
         | 
| 41 | 
            +
             | 
| 42 | 
            +
                        # 根據描述和性格特徵自動分類
         | 
| 43 | 
            +
                        if any(word in description for word in ['herding', 'shepherd', 'cattle', 'flock']):
         | 
| 44 | 
            +
                            categories['herding_dogs'].append(breed_info[1])
         | 
| 45 | 
            +
                        elif any(word in description for word in ['hunting', 'hunt', 'retriever', 'pointer']):
         | 
| 46 | 
            +
                            categories['hunting_dogs'].append(breed_info[1])
         | 
| 47 | 
            +
                        elif any(word in description for word in ['companion', 'toy', 'family', 'lap']):
         | 
| 48 | 
            +
                            categories['companion_dogs'].append(breed_info[1])
         | 
| 49 | 
            +
                        elif any(word in description for word in ['guard', 'protection', 'watchdog']):
         | 
| 50 | 
            +
                            categories['guard_dogs'].append(breed_info[1])
         | 
| 51 | 
            +
                        elif any(word in description for word in ['working', 'draft', 'cart']):
         | 
| 52 | 
            +
                            categories['working_dogs'].append(breed_info[1])
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                    return categories
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                def find_similar_breeds(self, breed_name: str, top_n: int = 5) -> List[Tuple[str, float]]:
         | 
| 57 | 
            +
                    """
         | 
| 58 | 
            +
                    找出與指定品種最相似的其他品種
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                    Args:
         | 
| 61 | 
            +
                        breed_name: 目標品種名稱
         | 
| 62 | 
            +
                        top_n: 返回的相似品種數量
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                    Returns:
         | 
| 65 | 
            +
                        List[Tuple[str, float]]: 相似品種列表,包含品種名稱和相似度分數
         | 
| 66 | 
            +
                    """
         | 
| 67 | 
            +
                    try:
         | 
| 68 | 
            +
                        target_breed = next((breed for breed in self.dog_data if breed[1] == breed_name), None)
         | 
| 69 | 
            +
                        if not target_breed:
         | 
| 70 | 
            +
                            return []
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                        # 獲取完整的目標品種特徵
         | 
| 73 | 
            +
                        target_features = {
         | 
| 74 | 
            +
                            'breed_name': target_breed[1],
         | 
| 75 | 
            +
                            'size': target_breed[2],
         | 
| 76 | 
            +
                            'temperament': target_breed[4],
         | 
| 77 | 
            +
                            'exercise': target_breed[7],
         | 
| 78 | 
            +
                            'grooming': target_breed[8],
         | 
| 79 | 
            +
                            'description': target_breed[9],
         | 
| 80 | 
            +
                            'good_with_children': target_breed[6]  # 添加這個特徵
         | 
| 81 | 
            +
                        }
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                        similarities = []
         | 
| 84 | 
            +
                        for breed in self.dog_data:
         | 
| 85 | 
            +
                            if breed[1] != breed_name:
         | 
| 86 | 
            +
                                breed_features = {
         | 
| 87 | 
            +
                                    'breed_name': breed[1],
         | 
| 88 | 
            +
                                    'size': breed[2],
         | 
| 89 | 
            +
                                    'temperament': breed[4],
         | 
| 90 | 
            +
                                    'exercise': breed[7],
         | 
| 91 | 
            +
                                    'grooming': breed[8],
         | 
| 92 | 
            +
                                    'description': breed[9],
         | 
| 93 | 
            +
                                    'good_with_children': breed[6]  # 添加這個特徵
         | 
| 94 | 
            +
                                }
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                                try:
         | 
| 97 | 
            +
                                    similarity_score = self._calculate_breed_similarity(target_features, breed_features)
         | 
| 98 | 
            +
                                    # 確保分數在有效範圍內
         | 
| 99 | 
            +
                                    similarity_score = min(1.0, max(0.0, similarity_score))
         | 
| 100 | 
            +
                                    similarities.append((breed[1], similarity_score))
         | 
| 101 | 
            +
                                except Exception as e:
         | 
| 102 | 
            +
                                    print(f"Error calculating similarity for {breed[1]}: {str(e)}")
         | 
| 103 | 
            +
                                    continue
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                        # 根據相似度排序並返回前N個
         | 
| 106 | 
            +
                        return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_n]
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    except Exception as e:
         | 
| 109 | 
            +
                        print(f"Error in find_similar_breeds: {str(e)}")
         | 
| 110 | 
            +
                        return []
         | 
| 111 | 
            +
             | 
| 112 | 
            +
             | 
| 113 | 
            +
                def _calculate_breed_similarity(self, breed1_features: Dict, breed2_features: Dict, weights: Dict[str, float]) -> float:
         | 
| 114 | 
            +
                    try:
         | 
| 115 | 
            +
                        # 1. 基礎相似度計算
         | 
| 116 | 
            +
                        size_similarity = self._calculate_size_similarity_enhanced(
         | 
| 117 | 
            +
                            breed1_features.get('size', 'Medium'),
         | 
| 118 | 
            +
                            breed2_features.get('size', 'Medium'),
         | 
| 119 | 
            +
                            breed2_features.get('description', '')
         | 
| 120 | 
            +
                        )
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                        exercise_similarity = self._calculate_exercise_similarity_enhanced(
         | 
| 123 | 
            +
                            breed1_features.get('exercise', 'Moderate'),
         | 
| 124 | 
            +
                            breed2_features.get('exercise', 'Moderate')
         | 
| 125 | 
            +
                        )
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                        # 性格相似度
         | 
| 128 | 
            +
                        temp1_embedding = self._get_cached_embedding(breed1_features.get('temperament', ''))
         | 
| 129 | 
            +
                        temp2_embedding = self._get_cached_embedding(breed2_features.get('temperament', ''))
         | 
| 130 | 
            +
                        temperament_similarity = float(util.pytorch_cos_sim(temp1_embedding, temp2_embedding))
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                        # 其他相似度
         | 
| 133 | 
            +
                        grooming_similarity = self._calculate_grooming_similarity(
         | 
| 134 | 
            +
                            breed1_features.get('breed_name', ''),
         | 
| 135 | 
            +
                            breed2_features.get('breed_name', '')
         | 
| 136 | 
            +
                        )
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                        health_similarity = self._calculate_health_score_similarity(
         | 
| 139 | 
            +
                            breed1_features.get('breed_name', ''),
         | 
| 140 | 
            +
                            breed2_features.get('breed_name', '')
         | 
| 141 | 
            +
                        )
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                        noise_similarity = self._calculate_noise_similarity(
         | 
| 144 | 
            +
                            breed1_features.get('breed_name', ''),
         | 
| 145 | 
            +
                            breed2_features.get('breed_name', '')
         | 
| 146 | 
            +
                        )
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                        # 2. 關鍵特徵評分
         | 
| 149 | 
            +
                        feature_scores = {}
         | 
| 150 | 
            +
                        for feature, similarity in {
         | 
| 151 | 
            +
                            'size': size_similarity,
         | 
| 152 | 
            +
                            'exercise': exercise_similarity,
         | 
| 153 | 
            +
                            'temperament': temperament_similarity,
         | 
| 154 | 
            +
                            'grooming': grooming_similarity,
         | 
| 155 | 
            +
                            'health': health_similarity,
         | 
| 156 | 
            +
                            'noise': noise_similarity
         | 
| 157 | 
            +
                        }.items():
         | 
| 158 | 
            +
                            # 根據權重調整每個特徵分數
         | 
| 159 | 
            +
                            importance = weights.get(feature, 0.1)
         | 
| 160 | 
            +
                            if importance > 0.3:  # 高權重特徵
         | 
| 161 | 
            +
                                if similarity < 0.5:  # 若關鍵特徵匹配度低
         | 
| 162 | 
            +
                                    feature_scores[feature] = similarity * 0.5  # 大幅降低分數
         | 
| 163 | 
            +
                                else:
         | 
| 164 | 
            +
                                    feature_scores[feature] = similarity * 1.2  # 提高匹配度好的分數
         | 
| 165 | 
            +
                            else:  # 一般特徵
         | 
| 166 | 
            +
                                feature_scores[feature] = similarity
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                        # 3. 計算最終相似度
         | 
| 169 | 
            +
                        weighted_sum = 0
         | 
| 170 | 
            +
                        weight_sum = 0
         | 
| 171 | 
            +
                        for feature, score in feature_scores.items():
         | 
| 172 | 
            +
                            feature_weight = weights.get(feature, 0.1)
         | 
| 173 | 
            +
                            weighted_sum += score * feature_weight
         | 
| 174 | 
            +
                            weight_sum += feature_weight
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                        final_similarity = weighted_sum / weight_sum if weight_sum > 0 else 0.5
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                        return min(1.0, max(0.2, final_similarity))  # 設定最低分數為0.2
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    except Exception as e:
         | 
| 181 | 
            +
                        print(f"Error in calculate_breed_similarity: {str(e)}")
         | 
| 182 | 
            +
                        return 0.5
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                def get_breed_characteristics_score(self, breed_features: Dict, description: str) -> float:
         | 
| 185 | 
            +
                    score = 1.0
         | 
| 186 | 
            +
                    description_lower = description.lower()
         | 
| 187 | 
            +
                    breed_score_multipliers = []
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                    # 運動需求評估
         | 
| 190 | 
            +
                    exercise_needs = breed_features.get('exercise', 'Moderate')
         | 
| 191 | 
            +
                    exercise_keywords = ['active', 'running', 'energetic', 'athletic']
         | 
| 192 | 
            +
                    if any(keyword in description_lower for keyword in exercise_keywords):
         | 
| 193 | 
            +
                        multipliers = {
         | 
| 194 | 
            +
                            'Very High': 1.5,
         | 
| 195 | 
            +
                            'High': 1.3,
         | 
| 196 | 
            +
                            'Moderate': 0.7,
         | 
| 197 | 
            +
                            'Low': 0.4
         | 
| 198 | 
            +
                        }
         | 
| 199 | 
            +
                        breed_score_multipliers.append(multipliers.get(exercise_needs, 1.0))
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                    # 體型評估
         | 
| 202 | 
            +
                    size = breed_features.get('size', 'Medium')
         | 
| 203 | 
            +
                    if 'apartment' in description_lower:
         | 
| 204 | 
            +
                        size_multipliers = {
         | 
| 205 | 
            +
                            'Giant': 0.3,
         | 
| 206 | 
            +
                            'Large': 0.6,
         | 
| 207 | 
            +
                            'Medium-Large': 0.8,
         | 
| 208 | 
            +
                            'Medium': 1.4,
         | 
| 209 | 
            +
                            'Small': 1.0,
         | 
| 210 | 
            +
                            'Tiny': 0.9
         | 
| 211 | 
            +
                        }
         | 
| 212 | 
            +
                        breed_score_multipliers.append(size_multipliers.get(size, 1.0))
         | 
| 213 | 
            +
                    elif 'house' in description_lower:
         | 
| 214 | 
            +
                        size_multipliers = {
         | 
| 215 | 
            +
                            'Giant': 0.8,
         | 
| 216 | 
            +
                            'Large': 1.2,
         | 
| 217 | 
            +
                            'Medium-Large': 1.3,
         | 
| 218 | 
            +
                            'Medium': 1.2,
         | 
| 219 | 
            +
                            'Small': 0.9,
         | 
| 220 | 
            +
                            'Tiny': 0.7
         | 
| 221 | 
            +
                        }
         | 
| 222 | 
            +
                        breed_score_multipliers.append(size_multipliers.get(size, 1.0))
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                    # 家庭適應性評估
         | 
| 225 | 
            +
                    if any(keyword in description_lower for keyword in ['family', 'children', 'kids']):
         | 
| 226 | 
            +
                        good_with_children = breed_features.get('good_with_children', False)
         | 
| 227 | 
            +
                        breed_score_multipliers.append(1.3 if good_with_children else 0.6)
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                    # 噪音評估
         | 
| 230 | 
            +
                    if 'quiet' in description_lower:
         | 
| 231 | 
            +
                        noise_level = breed_features.get('noise_level', 'Moderate')
         | 
| 232 | 
            +
                        noise_multipliers = {
         | 
| 233 | 
            +
                            'Low': 1.3,
         | 
| 234 | 
            +
                            'Moderate': 0.9,
         | 
| 235 | 
            +
                            'High': 0.5
         | 
| 236 | 
            +
                        }
         | 
| 237 | 
            +
                        breed_score_multipliers.append(noise_multipliers.get(noise_level, 1.0))
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                    # 應用所有乘數
         | 
| 240 | 
            +
                    for multiplier in breed_score_multipliers:
         | 
| 241 | 
            +
                        score *= multiplier
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                    # 確保分數在合理範圍內
         | 
| 244 | 
            +
                    return min(1.5, max(0.3, score))
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                def _calculate_size_similarity_enhanced(self, size1: str, size2: str, description: str) -> float:
         | 
| 247 | 
            +
                    """
         | 
| 248 | 
            +
                    增強版尺寸相似度計算
         | 
| 249 | 
            +
                    """
         | 
| 250 | 
            +
                    try:
         | 
| 251 | 
            +
                        # 更細緻的尺寸映射
         | 
| 252 | 
            +
                        size_map = {
         | 
| 253 | 
            +
                            'Tiny': 0,
         | 
| 254 | 
            +
                            'Small': 1,
         | 
| 255 | 
            +
                            'Small-Medium': 2,
         | 
| 256 | 
            +
                            'Medium': 3,
         | 
| 257 | 
            +
                            'Medium-Large': 4,
         | 
| 258 | 
            +
                            'Large': 5,
         | 
| 259 | 
            +
                            'Giant': 6
         | 
| 260 | 
            +
                        }
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                        # 標準化並獲取數值
         | 
| 263 | 
            +
                        value1 = size_map.get(self._normalize_size(size1), 3)
         | 
| 264 | 
            +
                        value2 = size_map.get(self._normalize_size(size2), 3)
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                        # 基礎相似度計算
         | 
| 267 | 
            +
                        base_similarity = 1.0 - (abs(value1 - value2) / 6.0)
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                        # 環境適應性調整
         | 
| 270 | 
            +
                        if 'apartment' in description.lower():
         | 
| 271 | 
            +
                            if size2 in ['Large', 'Giant']:
         | 
| 272 | 
            +
                                base_similarity *= 0.7  # 大型犬在公寓降低相似度
         | 
| 273 | 
            +
                            elif size2 in ['Medium', 'Medium-Large']:
         | 
| 274 | 
            +
                                base_similarity *= 1.2  # 中型犬更適合
         | 
| 275 | 
            +
                            elif size2 in ['Small', 'Tiny']:
         | 
| 276 | 
            +
                                base_similarity *= 0.8  # 過小的狗也不是最佳選擇
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                        return min(1.0, base_similarity)
         | 
| 279 | 
            +
                    except Exception as e:
         | 
| 280 | 
            +
                        print(f"Error in calculate_size_similarity_enhanced: {str(e)}")
         | 
| 281 | 
            +
                        return 0.5
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                def _normalize_size(self, size: str) -> str:
         | 
| 284 | 
            +
                    """
         | 
| 285 | 
            +
                    標準化犬種尺寸分類
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                    Args:
         | 
| 288 | 
            +
                        size: 原始尺寸描述
         | 
| 289 | 
            +
             | 
| 290 | 
            +
                    Returns:
         | 
| 291 | 
            +
                        str: 標準化後的尺寸類別
         | 
| 292 | 
            +
                    """
         | 
| 293 | 
            +
                    try:
         | 
| 294 | 
            +
                        size = size.lower()
         | 
| 295 | 
            +
                        if 'tiny' in size:
         | 
| 296 | 
            +
                            return 'Tiny'
         | 
| 297 | 
            +
                        elif 'small' in size and 'medium' in size:
         | 
| 298 | 
            +
                            return 'Small-Medium'
         | 
| 299 | 
            +
                        elif 'small' in size:
         | 
| 300 | 
            +
                            return 'Small'
         | 
| 301 | 
            +
                        elif 'medium' in size and 'large' in size:
         | 
| 302 | 
            +
                            return 'Medium-Large'
         | 
| 303 | 
            +
                        elif 'medium' in size:
         | 
| 304 | 
            +
                            return 'Medium'
         | 
| 305 | 
            +
                        elif 'giant' in size:
         | 
| 306 | 
            +
                            return 'Giant'
         | 
| 307 | 
            +
                        elif 'large' in size:
         | 
| 308 | 
            +
                            return 'Large'
         | 
| 309 | 
            +
                        return 'Medium'  # 默認為 Medium
         | 
| 310 | 
            +
                    except Exception as e:
         | 
| 311 | 
            +
                        print(f"Error in normalize_size: {str(e)}")
         | 
| 312 | 
            +
                        return 'Medium'
         | 
| 313 | 
            +
             | 
| 314 | 
            +
                def _calculate_exercise_similarity_enhanced(self, exercise1: str, exercise2: str) -> float:
         | 
| 315 | 
            +
                    try:
         | 
| 316 | 
            +
                        exercise_values = {
         | 
| 317 | 
            +
                            'Very High': 4,
         | 
| 318 | 
            +
                            'High': 3,
         | 
| 319 | 
            +
                            'Moderate': 2,
         | 
| 320 | 
            +
                            'Low': 1
         | 
| 321 | 
            +
                        }
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                        value1 = exercise_values.get(exercise1, 2)
         | 
| 324 | 
            +
                        value2 = exercise_values.get(exercise2, 2)
         | 
| 325 | 
            +
             | 
| 326 | 
            +
                        # 計算差異
         | 
| 327 | 
            +
                        diff = abs(value1 - value2)
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                        if diff == 0:
         | 
| 330 | 
            +
                            return 1.0
         | 
| 331 | 
            +
                        elif diff == 1:
         | 
| 332 | 
            +
                            return 0.7
         | 
| 333 | 
            +
                        elif diff == 2:
         | 
| 334 | 
            +
                            return 0.4
         | 
| 335 | 
            +
                        else:
         | 
| 336 | 
            +
                            return 0.2
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                    except Exception as e:
         | 
| 339 | 
            +
                        print(f"Error in calculate_exercise_similarity_enhanced: {str(e)}")
         | 
| 340 | 
            +
                        return 0.5
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                def _calculate_grooming_similarity(self, breed1: str, breed2: str) -> float:
         | 
| 343 | 
            +
                    """
         | 
| 344 | 
            +
                    計算美容需求相似度
         | 
| 345 | 
            +
             | 
| 346 | 
            +
                    Args:
         | 
| 347 | 
            +
                        breed1: 第一個品種名稱
         | 
| 348 | 
            +
                        breed2: 第二個品種名稱
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                    Returns:
         | 
| 351 | 
            +
                        float: 相似度分數 (0-1)
         | 
| 352 | 
            +
                    """
         | 
| 353 | 
            +
                    try:
         | 
| 354 | 
            +
                        grooming_map = {
         | 
| 355 | 
            +
                            'Low': 1,
         | 
| 356 | 
            +
                            'Moderate': 2,
         | 
| 357 | 
            +
                            'High': 3
         | 
| 358 | 
            +
                        }
         | 
| 359 | 
            +
             | 
| 360 | 
            +
                        # 從dog_data中獲取美容需求
         | 
| 361 | 
            +
                        breed1_info = next((dog for dog in self.dog_data if dog[1] == breed1), None)
         | 
| 362 | 
            +
                        breed2_info = next((dog for dog in self.dog_data if dog[1] == breed2), None)
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                        if not breed1_info or not breed2_info:
         | 
| 365 | 
            +
                            return 0.5  # 數據缺失時返回中等相似度
         | 
| 366 | 
            +
             | 
| 367 | 
            +
                        grooming1 = breed1_info[8]  # Grooming_Needs index
         | 
| 368 | 
            +
                        grooming2 = breed2_info[8]
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                        # 獲取數值,默認為 Moderate
         | 
| 371 | 
            +
                        value1 = grooming_map.get(grooming1, 2)
         | 
| 372 | 
            +
                        value2 = grooming_map.get(grooming2, 2)
         | 
| 373 | 
            +
             | 
| 374 | 
            +
                        # 基礎相似度計算
         | 
| 375 | 
            +
                        base_similarity = 1.0 - (abs(value1 - value2) / 2.0)
         | 
| 376 | 
            +
             | 
| 377 | 
            +
                        # 美容需求調整
         | 
| 378 | 
            +
                        if grooming2 == 'Moderate':
         | 
| 379 | 
            +
                            base_similarity *= 1.1  # 中等美容需求略微加分
         | 
| 380 | 
            +
                        elif grooming2 == 'High':
         | 
| 381 | 
            +
                            base_similarity *= 0.9  # 高美容需求略微降分
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                        return min(1.0, base_similarity)
         | 
| 384 | 
            +
                    except Exception as e:
         | 
| 385 | 
            +
                        print(f"Error in calculate_grooming_similarity: {str(e)}")
         | 
| 386 | 
            +
                        return 0.5
         | 
| 387 | 
            +
             | 
| 388 | 
            +
                def _calculate_health_score_similarity(self, breed1: str, breed2: str) -> float:
         | 
| 389 | 
            +
                    """
         | 
| 390 | 
            +
                    計算兩個品種的健康評分相似度
         | 
| 391 | 
            +
                    """
         | 
| 392 | 
            +
                    try:
         | 
| 393 | 
            +
                        score1 = self._calculate_health_score(breed1)
         | 
| 394 | 
            +
                        score2 = self._calculate_health_score(breed2)
         | 
| 395 | 
            +
                        return 1.0 - abs(score1 - score2)
         | 
| 396 | 
            +
                    except Exception as e:
         | 
| 397 | 
            +
                        print(f"Error in calculate_health_score_similarity: {str(e)}")
         | 
| 398 | 
            +
                        return 0.5
         | 
| 399 | 
            +
             | 
| 400 | 
            +
                def _calculate_health_score(self, breed_name: str) -> float:
         | 
| 401 | 
            +
                    """
         | 
| 402 | 
            +
                    計算品種的健康評分
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                    Args:
         | 
| 405 | 
            +
                        breed_name: 品種名稱
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                    Returns:
         | 
| 408 | 
            +
                        float: 健康評分 (0-1)
         | 
| 409 | 
            +
                    """
         | 
| 410 | 
            +
                    try:
         | 
| 411 | 
            +
                        if breed_name not in breed_health_info:
         | 
| 412 | 
            +
                            return 0.5
         | 
| 413 | 
            +
             | 
| 414 | 
            +
                        health_notes = breed_health_info[breed_name]['health_notes'].lower()
         | 
| 415 | 
            +
             | 
| 416 | 
            +
                        # 嚴重健康問題
         | 
| 417 | 
            +
                        severe_conditions = [
         | 
| 418 | 
            +
                            'cancer', 'cardiomyopathy', 'epilepsy', 'dysplasia',
         | 
| 419 | 
            +
                            'bloat', 'progressive', 'syndrome'
         | 
| 420 | 
            +
                        ]
         | 
| 421 | 
            +
             | 
| 422 | 
            +
                        # 中等健康問題
         | 
| 423 | 
            +
                        moderate_conditions = [
         | 
| 424 | 
            +
                            'allergies', 'infections', 'thyroid', 'luxation',
         | 
| 425 | 
            +
                            'skin problems', 'ear'
         | 
| 426 | 
            +
                        ]
         | 
| 427 | 
            +
             | 
| 428 | 
            +
                        # 計算問題數量
         | 
| 429 | 
            +
                        severe_count = sum(1 for condition in severe_conditions if condition in health_notes)
         | 
| 430 | 
            +
                        moderate_count = sum(1 for condition in moderate_conditions if condition in health_notes)
         | 
| 431 | 
            +
             | 
| 432 | 
            +
                        # 基礎健康評分
         | 
| 433 | 
            +
                        health_score = 1.0
         | 
| 434 | 
            +
                        health_score -= (severe_count * 0.15)  # 嚴重問題扣分更多
         | 
| 435 | 
            +
                        health_score -= (moderate_count * 0.05)  # 中等問題扣分較少
         | 
| 436 | 
            +
             | 
| 437 | 
            +
                        # 確保評分在合理範圍內
         | 
| 438 | 
            +
                        return max(0.3, min(1.0, health_score))
         | 
| 439 | 
            +
                    except Exception as e:
         | 
| 440 | 
            +
                        print(f"Error in calculate_health_score: {str(e)}")
         | 
| 441 | 
            +
                        return 0.5
         | 
| 442 | 
            +
             | 
| 443 | 
            +
             | 
| 444 | 
            +
                def _calculate_noise_similarity(self, breed1: str, breed2: str) -> float:
         | 
| 445 | 
            +
                    """計算兩個品種的噪音相似度"""
         | 
| 446 | 
            +
                    noise_levels = {
         | 
| 447 | 
            +
                        'Low': 1,
         | 
| 448 | 
            +
                        'Moderate': 2,
         | 
| 449 | 
            +
                        'High': 3,
         | 
| 450 | 
            +
                        'Unknown': 2  # 默認為中等
         | 
| 451 | 
            +
                    }
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                    noise1 = breed_noise_info.get(breed1, {}).get('noise_level', 'Unknown')
         | 
| 454 | 
            +
                    noise2 = breed_noise_info.get(breed2, {}).get('noise_level', 'Unknown')
         | 
| 455 | 
            +
             | 
| 456 | 
            +
                    # 獲取數值級別
         | 
| 457 | 
            +
                    level1 = noise_levels.get(noise1, 2)
         | 
| 458 | 
            +
                    level2 = noise_levels.get(noise2, 2)
         | 
| 459 | 
            +
             | 
| 460 | 
            +
                    # 計算差異並歸一化
         | 
| 461 | 
            +
                    difference = abs(level1 - level2)
         | 
| 462 | 
            +
                    similarity = 1.0 - (difference / 2)  # 最大差異是2,所以除以2來歸一化
         | 
| 463 | 
            +
             | 
| 464 | 
            +
                    return similarity
         | 
| 465 | 
            +
             | 
| 466 | 
            +
                # bonus score zone
         | 
| 467 | 
            +
                def _calculate_size_bonus(self, size: str, living_space: str) -> float:
         | 
| 468 | 
            +
                    """
         | 
| 469 | 
            +
                    計算尺寸匹配的獎勵分數
         | 
| 470 | 
            +
             | 
| 471 | 
            +
                    Args:
         | 
| 472 | 
            +
                        size: 品種尺寸
         | 
| 473 | 
            +
                        living_space: 居住空間類型
         | 
| 474 | 
            +
             | 
| 475 | 
            +
                    Returns:
         | 
| 476 | 
            +
                        float: 獎勵分數 (-0.25 到 0.15)
         | 
| 477 | 
            +
                    """
         | 
| 478 | 
            +
                    try:
         | 
| 479 | 
            +
                        if living_space == "apartment":
         | 
| 480 | 
            +
                            size_scores = {
         | 
| 481 | 
            +
                                'Tiny': -0.15,
         | 
| 482 | 
            +
                                'Small': 0.10,
         | 
| 483 | 
            +
                                'Medium': 0.15,
         | 
| 484 | 
            +
                                'Large': 0.10,
         | 
| 485 | 
            +
                                'Giant': -0.30
         | 
| 486 | 
            +
                            }
         | 
| 487 | 
            +
                        else:  # house
         | 
| 488 | 
            +
                            size_scores = {
         | 
| 489 | 
            +
                                'Tiny': -0.10,
         | 
| 490 | 
            +
                                'Small': 0.05,
         | 
| 491 | 
            +
                                'Medium': 0.15,
         | 
| 492 | 
            +
                                'Large': 0.15,
         | 
| 493 | 
            +
                                'Giant': -0.15
         | 
| 494 | 
            +
                            }
         | 
| 495 | 
            +
                        return size_scores.get(size, 0.0)
         | 
| 496 | 
            +
                    except Exception as e:
         | 
| 497 | 
            +
                        print(f"Error in calculate_size_bonus: {str(e)}")
         | 
| 498 | 
            +
                        return 0.0
         | 
| 499 | 
            +
             | 
| 500 | 
            +
                def _calculate_exercise_bonus(self, exercise_needs: str, exercise_time: int) -> float:
         | 
| 501 | 
            +
                    """
         | 
| 502 | 
            +
                    計算運動需求匹配的獎勵分數
         | 
| 503 | 
            +
             | 
| 504 | 
            +
                    Args:
         | 
| 505 | 
            +
                        exercise_needs: 品種運動需求
         | 
| 506 | 
            +
                        exercise_time: 用戶可提供的運動時間(分鐘)
         | 
| 507 | 
            +
             | 
| 508 | 
            +
                    Returns:
         | 
| 509 | 
            +
                        float: 獎勵分數 (-0.20 到 0.20)
         | 
| 510 | 
            +
                    """
         | 
| 511 | 
            +
                    try:
         | 
| 512 | 
            +
                        if exercise_time >= 120:  # 高運動量需求
         | 
| 513 | 
            +
                            exercise_scores = {
         | 
| 514 | 
            +
                                'Low': -0.30,
         | 
| 515 | 
            +
                                'Moderate': -0.10,
         | 
| 516 | 
            +
                                'High': 0.15,
         | 
| 517 | 
            +
                                'Very High': 0.30
         | 
| 518 | 
            +
                            }
         | 
| 519 | 
            +
                        elif exercise_time >= 60:  # 中等運動量需求
         | 
| 520 | 
            +
                            exercise_scores = {
         | 
| 521 | 
            +
                                'Low': -0.05,
         | 
| 522 | 
            +
                                'Moderate': 0.15,
         | 
| 523 | 
            +
                                'High': 0.05,
         | 
| 524 | 
            +
                                'Very High': -0.10
         | 
| 525 | 
            +
                            }
         | 
| 526 | 
            +
                        else:  # 低運動量需求
         | 
| 527 | 
            +
                            exercise_scores = {
         | 
| 528 | 
            +
                                'Low': 0.15,
         | 
| 529 | 
            +
                                'Moderate': 0.05,
         | 
| 530 | 
            +
                                'High': -0.15,
         | 
| 531 | 
            +
                                'Very High': -0.20
         | 
| 532 | 
            +
                            }
         | 
| 533 | 
            +
                        return exercise_scores.get(exercise_needs, 0.0)
         | 
| 534 | 
            +
                    except Exception as e:
         | 
| 535 | 
            +
                        print(f"Error in calculate_exercise_bonus: {str(e)}")
         | 
| 536 | 
            +
                        return 0.0
         | 
| 537 | 
            +
             | 
| 538 | 
            +
                def _calculate_grooming_bonus(self, grooming: str, commitment: str) -> float:
         | 
| 539 | 
            +
                    """
         | 
| 540 | 
            +
                    計算美容需求匹配的獎勵分數
         | 
| 541 | 
            +
             | 
| 542 | 
            +
                    Args:
         | 
| 543 | 
            +
                        grooming: 品種美容需求
         | 
| 544 | 
            +
                        commitment: 用戶美容投入程度
         | 
| 545 | 
            +
             | 
| 546 | 
            +
                    Returns:
         | 
| 547 | 
            +
                        float: 獎勵分數 (-0.15 到 0.10)
         | 
| 548 | 
            +
                    """
         | 
| 549 | 
            +
                    try:
         | 
| 550 | 
            +
                        if commitment == "high":
         | 
| 551 | 
            +
                            grooming_scores = {
         | 
| 552 | 
            +
                                'Low': -0.05,
         | 
| 553 | 
            +
                                'Moderate': 0.05,
         | 
| 554 | 
            +
                                'High': 0.10
         | 
| 555 | 
            +
                            }
         | 
| 556 | 
            +
                        else:  # medium or low commitment
         | 
| 557 | 
            +
                            grooming_scores = {
         | 
| 558 | 
            +
                                'Low': 0.10,
         | 
| 559 | 
            +
                                'Moderate': 0.05,
         | 
| 560 | 
            +
                                'High': -0.20
         | 
| 561 | 
            +
                            }
         | 
| 562 | 
            +
                        return grooming_scores.get(grooming, 0.0)
         | 
| 563 | 
            +
                    except Exception as e:
         | 
| 564 | 
            +
                        print(f"Error in calculate_grooming_bonus: {str(e)}")
         | 
| 565 | 
            +
                        return 0.0
         | 
| 566 | 
            +
             | 
| 567 | 
            +
                def _calculate_family_bonus(self, breed_info: Dict) -> float:
         | 
| 568 | 
            +
                    """
         | 
| 569 | 
            +
                    計算家庭適應性的獎勵分數
         | 
| 570 | 
            +
             | 
| 571 | 
            +
                    Args:
         | 
| 572 | 
            +
                        breed_info: 品種信息字典
         | 
| 573 | 
            +
             | 
| 574 | 
            +
                    Returns:
         | 
| 575 | 
            +
                        float: 獎勵分數 (0 到 0.20)
         | 
| 576 | 
            +
                    """
         | 
| 577 | 
            +
                    try:
         | 
| 578 | 
            +
                        bonus = 0.0
         | 
| 579 | 
            +
                        temperament = breed_info.get('Temperament', '').lower()
         | 
| 580 | 
            +
                        good_with_children = breed_info.get('Good_With_Children', False)
         | 
| 581 | 
            +
             | 
| 582 | 
            +
                        if good_with_children:
         | 
| 583 | 
            +
                            bonus += 0.20
         | 
| 584 | 
            +
                        if any(trait in temperament for trait in ['gentle', 'patient', 'friendly']):
         | 
| 585 | 
            +
                            bonus += 0.10
         | 
| 586 | 
            +
             | 
| 587 | 
            +
                        return min(0.20, bonus)
         | 
| 588 | 
            +
                    except Exception as e:
         | 
| 589 | 
            +
                        print(f"Error in calculate_family_bonus: {str(e)}")
         | 
| 590 | 
            +
                        return 0.0
         | 
| 591 | 
            +
             | 
| 592 | 
            +
             | 
| 593 | 
            +
                def _detect_scenario(self, description: str) -> Dict[str, float]:
         | 
| 594 | 
            +
                    """
         | 
| 595 | 
            +
                    檢測場景並返回對應權重
         | 
| 596 | 
            +
                    """
         | 
| 597 | 
            +
                    # 基礎場景定義
         | 
| 598 | 
            +
                    scenarios = {
         | 
| 599 | 
            +
                        'athletic': {
         | 
| 600 | 
            +
                            'keywords': ['active', 'exercise', 'running', 'athletic', 'energetic', 'sports'],
         | 
| 601 | 
            +
                            'weights': {
         | 
| 602 | 
            +
                                'exercise': 0.40,
         | 
| 603 | 
            +
                                'size': 0.25,
         | 
| 604 | 
            +
                                'temperament': 0.20,
         | 
| 605 | 
            +
                                'health': 0.15
         | 
| 606 | 
            +
                            }
         | 
| 607 | 
            +
                        },
         | 
| 608 | 
            +
                        'apartment': {
         | 
| 609 | 
            +
                            'keywords': ['apartment', 'flat', 'condo'],
         | 
| 610 | 
            +
                            'weights': {
         | 
| 611 | 
            +
                                'size': 0.35,
         | 
| 612 | 
            +
                                'noise': 0.30,
         | 
| 613 | 
            +
                                'exercise': 0.20,
         | 
| 614 | 
            +
                                'temperament': 0.15
         | 
| 615 | 
            +
                            }
         | 
| 616 | 
            +
                        },
         | 
| 617 | 
            +
                        'family': {
         | 
| 618 | 
            +
                            'keywords': ['family', 'children', 'kids', 'friendly'],
         | 
| 619 | 
            +
                            'weights': {
         | 
| 620 | 
            +
                                'temperament': 0.35,
         | 
| 621 | 
            +
                                'safety': 0.30,
         | 
| 622 | 
            +
                                'noise': 0.20,
         | 
| 623 | 
            +
                                'exercise': 0.15
         | 
| 624 | 
            +
                            }
         | 
| 625 | 
            +
                        },
         | 
| 626 | 
            +
                        'novice': {
         | 
| 627 | 
            +
                            'keywords': ['first time', 'beginner', 'new owner', 'inexperienced'],
         | 
| 628 | 
            +
                            'weights': {
         | 
| 629 | 
            +
                                'trainability': 0.35,
         | 
| 630 | 
            +
                                'temperament': 0.30,
         | 
| 631 | 
            +
                                'care_level': 0.20,
         | 
| 632 | 
            +
                                'health': 0.15
         | 
| 633 | 
            +
                            }
         | 
| 634 | 
            +
                        }
         | 
| 635 | 
            +
                    }
         | 
| 636 | 
            +
             | 
| 637 | 
            +
                    # 檢測匹配的場景
         | 
| 638 | 
            +
                    matched_scenarios = []
         | 
| 639 | 
            +
                    for scenario, config in scenarios.items():
         | 
| 640 | 
            +
                        if any(keyword in description.lower() for keyword in config['keywords']):
         | 
| 641 | 
            +
                            matched_scenarios.append(scenario)
         | 
| 642 | 
            +
             | 
| 643 | 
            +
                    # 默認權重
         | 
| 644 | 
            +
                    default_weights = {
         | 
| 645 | 
            +
                        'exercise': 0.20,
         | 
| 646 | 
            +
                        'size': 0.20,
         | 
| 647 | 
            +
                        'temperament': 0.20,
         | 
| 648 | 
            +
                        'health': 0.15,
         | 
| 649 | 
            +
                        'noise': 0.10,
         | 
| 650 | 
            +
                        'grooming': 0.10,
         | 
| 651 | 
            +
                        'trainability': 0.05
         | 
| 652 | 
            +
                    }
         | 
| 653 | 
            +
             | 
| 654 | 
            +
                    # 如果沒有匹配場景,返回默認權重
         | 
| 655 | 
            +
                    if not matched_scenarios:
         | 
| 656 | 
            +
                        return default_weights
         | 
| 657 | 
            +
             | 
| 658 | 
            +
                    # 合併匹配場景的權重
         | 
| 659 | 
            +
                    final_weights = default_weights.copy()
         | 
| 660 | 
            +
                    for scenario in matched_scenarios:
         | 
| 661 | 
            +
                        scenario_weights = scenarios[scenario]['weights']
         | 
| 662 | 
            +
                        for feature, weight in scenario_weights.items():
         | 
| 663 | 
            +
                            if feature in final_weights:
         | 
| 664 | 
            +
                                final_weights[feature] = max(final_weights[feature], weight)
         | 
| 665 | 
            +
             | 
| 666 | 
            +
                    return final_weights
         | 
| 667 | 
            +
             | 
| 668 | 
            +
             | 
| 669 | 
            +
                def _calculate_final_scores(self, breed_name: str, base_scores: Dict,
         | 
| 670 | 
            +
                                      smart_score: float, is_preferred: bool,
         | 
| 671 | 
            +
                                      similarity_score: float = 0.0,
         | 
| 672 | 
            +
                                      characteristics_score: float = 1.0,
         | 
| 673 | 
            +
                                      weights: Dict[str, float] = None) -> Dict:
         | 
| 674 | 
            +
                    try:
         | 
| 675 | 
            +
                        # 使用傳入的權重或默認權重
         | 
| 676 | 
            +
                        if weights is None:
         | 
| 677 | 
            +
                            weights = {
         | 
| 678 | 
            +
                                'base': 0.35,
         | 
| 679 | 
            +
                                'smart': 0.35,
         | 
| 680 | 
            +
                                'bonus': 0.15,
         | 
| 681 | 
            +
                                'characteristics': 0.15
         | 
| 682 | 
            +
                            }
         | 
| 683 | 
            +
             | 
| 684 | 
            +
                        # 確保 base_scores 包含所有必要的鍵
         | 
| 685 | 
            +
                        base_scores = {
         | 
| 686 | 
            +
                            'overall': base_scores.get('overall', smart_score),
         | 
| 687 | 
            +
                            'size': base_scores.get('size', 0.0),
         | 
| 688 | 
            +
                            'exercise': base_scores.get('exercise', 0.0),
         | 
| 689 | 
            +
                            'temperament': base_scores.get('temperament', 0.0),
         | 
| 690 | 
            +
                            'grooming': base_scores.get('grooming', 0.0),
         | 
| 691 | 
            +
                            'health': base_scores.get('health', 0.0),
         | 
| 692 | 
            +
                            'noise': base_scores.get('noise', 0.0)
         | 
| 693 | 
            +
                        }
         | 
| 694 | 
            +
             | 
| 695 | 
            +
                        # 計算基礎分數
         | 
| 696 | 
            +
                        base_score = base_scores['overall']
         | 
| 697 | 
            +
             | 
| 698 | 
            +
                        # 計算獎勵分數
         | 
| 699 | 
            +
                        bonus_score = 0.0
         | 
| 700 | 
            +
                        if is_preferred:
         | 
| 701 | 
            +
                            bonus_score = 0.95
         | 
| 702 | 
            +
                        elif similarity_score > 0:
         | 
| 703 | 
            +
                            bonus_score = min(0.8, similarity_score) * 0.95
         | 
| 704 | 
            +
             | 
| 705 | 
            +
                        # 特徵匹配度調整
         | 
| 706 | 
            +
                        if characteristics_score < 0.5:
         | 
| 707 | 
            +
                            base_score *= 0.7  # 降低基礎分數
         | 
| 708 | 
            +
                            smart_score *= 0.7  # 降低智能匹配分數
         | 
| 709 | 
            +
             | 
| 710 | 
            +
                        # 計算最終分數
         | 
| 711 | 
            +
                        final_score = (
         | 
| 712 | 
            +
                            base_score * weights.get('base', 0.35) +
         | 
| 713 | 
            +
                            smart_score * weights.get('smart', 0.35) +
         | 
| 714 | 
            +
                            bonus_score * weights.get('bonus', 0.15) +
         | 
| 715 | 
            +
                            characteristics_score * weights.get('characteristics', 0.15)
         | 
| 716 | 
            +
                        )
         | 
| 717 | 
            +
             | 
| 718 | 
            +
                        # 確保分數在合理範圍內
         | 
| 719 | 
            +
                        final_score = min(1.0, max(0.3, final_score))
         | 
| 720 | 
            +
             | 
| 721 | 
            +
                        return {
         | 
| 722 | 
            +
                            'final_score': round(final_score, 4),
         | 
| 723 | 
            +
                            'base_score': round(base_score, 4),
         | 
| 724 | 
            +
                            'smart_score': round(smart_score, 4),
         | 
| 725 | 
            +
                            'bonus_score': round(bonus_score, 4),
         | 
| 726 | 
            +
                            'characteristics_score': round(characteristics_score, 4),
         | 
| 727 | 
            +
                            'detailed_scores': base_scores
         | 
| 728 | 
            +
                        }
         | 
| 729 | 
            +
             | 
| 730 | 
            +
                    except Exception as e:
         | 
| 731 | 
            +
                        print(f"Error in calculate_final_scores: {str(e)}")
         | 
| 732 | 
            +
                        return {
         | 
| 733 | 
            +
                            'final_score': 0.5,
         | 
| 734 | 
            +
                            'base_score': 0.5,
         | 
| 735 | 
            +
                            'smart_score': 0.5,
         | 
| 736 | 
            +
                            'bonus_score': 0.0,
         | 
| 737 | 
            +
                            'characteristics_score': 0.5,
         | 
| 738 | 
            +
                            'detailed_scores': {
         | 
| 739 | 
            +
                                'overall': 0.5,
         | 
| 740 | 
            +
                                'size': 0.5,
         | 
| 741 | 
            +
                                'exercise': 0.5,
         | 
| 742 | 
            +
                                'temperament': 0.5,
         | 
| 743 | 
            +
                                'grooming': 0.5,
         | 
| 744 | 
            +
                                'health': 0.5,
         | 
| 745 | 
            +
                                'noise': 0.5
         | 
| 746 | 
            +
                            }
         | 
| 747 | 
            +
                        }
         | 
| 748 | 
            +
             | 
| 749 | 
            +
                def _general_matching(self, description: str, weights: Dict[str, float], top_n: int = 10) -> List[Dict]:
         | 
| 750 | 
            +
                    """基本的品種匹配邏輯,考慮描述、性格、噪音和健康因素"""
         | 
| 751 | 
            +
                    try:
         | 
| 752 | 
            +
                        matches = []
         | 
| 753 | 
            +
                        desc_embedding = self._get_cached_embedding(description)
         | 
| 754 | 
            +
             | 
| 755 | 
            +
                        for breed in self.dog_data:
         | 
| 756 | 
            +
                            breed_name = breed[1]
         | 
| 757 | 
            +
                            breed_features = self._extract_breed_features(breed)
         | 
| 758 | 
            +
                            breed_description = breed[9]
         | 
| 759 | 
            +
                            temperament = breed[4]
         | 
| 760 | 
            +
             | 
| 761 | 
            +
                            breed_desc_embedding = self._get_cached_embedding(breed_description)
         | 
| 762 | 
            +
                            breed_temp_embedding = self._get_cached_embedding(temperament)
         | 
| 763 | 
            +
             | 
| 764 | 
            +
                            desc_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_desc_embedding))
         | 
| 765 | 
            +
                            temp_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_temp_embedding))
         | 
| 766 | 
            +
             | 
| 767 | 
            +
                            noise_similarity = self._calculate_noise_similarity(breed_name, breed_name)
         | 
| 768 | 
            +
                            health_score = self._calculate_health_score(breed_name)
         | 
| 769 | 
            +
                            health_similarity = 1.0 - abs(health_score - 0.8)
         | 
| 770 | 
            +
             | 
| 771 | 
            +
                            # 使用傳入的權重
         | 
| 772 | 
            +
                            final_score = (
         | 
| 773 | 
            +
                                desc_similarity * weights.get('description', 0.35) +
         | 
| 774 | 
            +
                                temp_similarity * weights.get('temperament', 0.25) +
         | 
| 775 | 
            +
                                noise_similarity * weights.get('noise', 0.2) +
         | 
| 776 | 
            +
                                health_similarity * weights.get('health', 0.2)
         | 
| 777 | 
            +
                            )
         | 
| 778 | 
            +
             | 
| 779 | 
            +
                            # 計算特徵分數
         | 
| 780 | 
            +
                            characteristics_score = self.get_breed_characteristics_score(breed_features, description)
         | 
| 781 | 
            +
             | 
| 782 | 
            +
                            # 構建完整的 scores 字典
         | 
| 783 | 
            +
                            scores = {
         | 
| 784 | 
            +
                                'overall': final_score,
         | 
| 785 | 
            +
                                'size': breed_features.get('size_score', 0.0),
         | 
| 786 | 
            +
                                'exercise': breed_features.get('exercise_score', 0.0),
         | 
| 787 | 
            +
                                'temperament': temp_similarity,
         | 
| 788 | 
            +
                                'grooming': breed_features.get('grooming_score', 0.0),
         | 
| 789 | 
            +
                                'health': health_score,
         | 
| 790 | 
            +
                                'noise': noise_similarity
         | 
| 791 | 
            +
                            }
         | 
| 792 | 
            +
             | 
| 793 | 
            +
                            matches.append({
         | 
| 794 | 
            +
                                'breed': breed_name,
         | 
| 795 | 
            +
                                'scores': scores,
         | 
| 796 | 
            +
                                'final_score': final_score,
         | 
| 797 | 
            +
                                'base_score': final_score,
         | 
| 798 | 
            +
                                'characteristics_score': characteristics_score,
         | 
| 799 | 
            +
                                'bonus_score': 0.0,
         | 
| 800 | 
            +
                                'is_preferred': False,
         | 
| 801 | 
            +
                                'similarity': final_score,
         | 
| 802 | 
            +
                                'health_score': health_score,
         | 
| 803 | 
            +
                                'reason': "Matched based on description and characteristics"
         | 
| 804 | 
            +
                            })
         | 
| 805 | 
            +
             | 
| 806 | 
            +
                        return sorted(matches, key=lambda x: (-x['characteristics_score'], -x['final_score']))[:top_n]
         | 
| 807 | 
            +
             | 
| 808 | 
            +
                    except Exception as e:
         | 
| 809 | 
            +
                        print(f"Error in _general_matching: {str(e)}")
         | 
| 810 | 
            +
                        return []
         | 
| 811 | 
            +
             | 
| 812 | 
            +
             | 
| 813 | 
            +
                def _detect_breed_preference(self, description: str) -> Optional[str]:
         | 
| 814 | 
            +
                    """檢測用戶是否提到特定品種"""
         | 
| 815 | 
            +
                    description_lower = f" {description.lower()} "
         | 
| 816 | 
            +
             | 
| 817 | 
            +
                    for breed_info in self.dog_data:
         | 
| 818 | 
            +
                        breed_name = breed_info[1]
         | 
| 819 | 
            +
                        normalized_breed = breed_name.lower().replace('_', ' ')
         | 
| 820 | 
            +
             | 
| 821 | 
            +
                        pattern = rf"\b{re.escape(normalized_breed)}\b"
         | 
| 822 | 
            +
             | 
| 823 | 
            +
                        if re.search(pattern, description_lower):
         | 
| 824 | 
            +
                            return breed_name
         | 
| 825 | 
            +
             | 
| 826 | 
            +
                    return None
         | 
| 827 | 
            +
             | 
| 828 | 
            +
                def _extract_breed_features(self, breed_info: Tuple) -> Dict:
         | 
| 829 | 
            +
                    """
         | 
| 830 | 
            +
                    從品種信息中提取特徵
         | 
| 831 | 
            +
             | 
| 832 | 
            +
                    Args:
         | 
| 833 | 
            +
                        breed_info: 品種信息元組
         | 
| 834 | 
            +
             | 
| 835 | 
            +
                    Returns:
         | 
| 836 | 
            +
                        Dict: 包含品種特徵的字典
         | 
| 837 | 
            +
                    """
         | 
| 838 | 
            +
                    try:
         | 
| 839 | 
            +
                        return {
         | 
| 840 | 
            +
                            'breed_name': breed_info[1],
         | 
| 841 | 
            +
                            'size': breed_info[2],
         | 
| 842 | 
            +
                            'temperament': breed_info[4],
         | 
| 843 | 
            +
                            'exercise': breed_info[7],
         | 
| 844 | 
            +
                            'grooming': breed_info[8],
         | 
| 845 | 
            +
                            'description': breed_info[9],
         | 
| 846 | 
            +
                            'good_with_children': breed_info[6]
         | 
| 847 | 
            +
                        }
         | 
| 848 | 
            +
                    except Exception as e:
         | 
| 849 | 
            +
                        print(f"Error in extract_breed_features: {str(e)}")
         | 
| 850 | 
            +
                        return {
         | 
| 851 | 
            +
                            'breed_name': '',
         | 
| 852 | 
            +
                            'size': 'Medium',
         | 
| 853 | 
            +
                            'temperament': '',
         | 
| 854 | 
            +
                            'exercise': 'Moderate',
         | 
| 855 | 
            +
                            'grooming': 'Moderate',
         | 
| 856 | 
            +
                            'description': '',
         | 
| 857 | 
            +
                            'good_with_children': False
         | 
| 858 | 
            +
                        }
         | 
| 859 | 
            +
             | 
| 860 | 
            +
                def match_user_preference(self, description: str, top_n: int = 10) -> List[Dict]:
         | 
| 861 | 
            +
                    try:
         | 
| 862 | 
            +
                        # 獲取場景權重
         | 
| 863 | 
            +
                        weights = self._detect_scenario(description)
         | 
| 864 | 
            +
                        matches = []
         | 
| 865 | 
            +
                        preferred_breed = self._detect_breed_preference(description)
         | 
| 866 | 
            +
             | 
| 867 | 
            +
                        # 處理用戶明確提到的品種
         | 
| 868 | 
            +
                        if preferred_breed:
         | 
| 869 | 
            +
                            breed_info = next((breed for breed in self.dog_data if breed[1] == preferred_breed), None)
         | 
| 870 | 
            +
                            if breed_info:
         | 
| 871 | 
            +
                                breed_features = self._extract_breed_features(breed_info)
         | 
| 872 | 
            +
                                base_similarity = self._calculate_breed_similarity(breed_features, breed_features, weights)
         | 
| 873 | 
            +
             | 
| 874 | 
            +
                                # 計算特徵分數
         | 
| 875 | 
            +
                                characteristics_score = self.get_breed_characteristics_score(breed_features, description)
         | 
| 876 | 
            +
             | 
| 877 | 
            +
                                # 計算最終分數
         | 
| 878 | 
            +
                                scores = self._calculate_final_scores(
         | 
| 879 | 
            +
                                    preferred_breed,
         | 
| 880 | 
            +
                                    {'overall': base_similarity},
         | 
| 881 | 
            +
                                    smart_score=base_similarity,
         | 
| 882 | 
            +
                                    is_preferred=True,
         | 
| 883 | 
            +
                                    similarity_score=1.0,
         | 
| 884 | 
            +
                                    characteristics_score=characteristics_score,
         | 
| 885 | 
            +
                                    weights=weights
         | 
| 886 | 
            +
                                )
         | 
| 887 | 
            +
             | 
| 888 | 
            +
                                matches.append({
         | 
| 889 | 
            +
                                    'breed': preferred_breed,
         | 
| 890 | 
            +
                                    'scores': scores['detailed_scores'],
         | 
| 891 | 
            +
                                    'final_score': scores['final_score'],
         | 
| 892 | 
            +
                                    'base_score': scores['base_score'],
         | 
| 893 | 
            +
                                    'bonus_score': scores['bonus_score'],
         | 
| 894 | 
            +
                                    'characteristics_score': characteristics_score,
         | 
| 895 | 
            +
                                    'is_preferred': True,
         | 
| 896 | 
            +
                                    'priority': 1,
         | 
| 897 | 
            +
                                    'health_score': self._calculate_health_score(preferred_breed),
         | 
| 898 | 
            +
                                    'reason': "Directly matched your preferred breed"
         | 
| 899 | 
            +
                                })
         | 
| 900 | 
            +
             | 
| 901 | 
            +
                                # 尋找相似品種
         | 
| 902 | 
            +
                                similar_breeds = self.find_similar_breeds(preferred_breed, top_n=top_n-1)
         | 
| 903 | 
            +
                                for breed_name, similarity in similar_breeds:
         | 
| 904 | 
            +
                                    if breed_name != preferred_breed:
         | 
| 905 | 
            +
                                        breed_info = next((breed for breed in self.dog_data if breed[1] == breed_name), None)
         | 
| 906 | 
            +
                                        if breed_info:
         | 
| 907 | 
            +
                                            breed_features = self._extract_breed_features(breed_info)
         | 
| 908 | 
            +
                                            characteristics_score = self.get_breed_characteristics_score(breed_features, description)
         | 
| 909 | 
            +
             | 
| 910 | 
            +
                                            scores = self._calculate_final_scores(
         | 
| 911 | 
            +
                                                breed_name,
         | 
| 912 | 
            +
                                                {'overall': similarity},
         | 
| 913 | 
            +
                                                smart_score=similarity,
         | 
| 914 | 
            +
                                                is_preferred=False,
         | 
| 915 | 
            +
                                                similarity_score=similarity,
         | 
| 916 | 
            +
                                                characteristics_score=characteristics_score,
         | 
| 917 | 
            +
                                                weights=weights
         | 
| 918 | 
            +
                                            )
         | 
| 919 | 
            +
             | 
| 920 | 
            +
                                            if scores['final_score'] >= 0.4:  # 設定最低分數門檻
         | 
| 921 | 
            +
                                                matches.append({
         | 
| 922 | 
            +
                                                    'breed': breed_name,
         | 
| 923 | 
            +
                                                    'scores': scores['detailed_scores'],
         | 
| 924 | 
            +
                                                    'final_score': scores['final_score'],
         | 
| 925 | 
            +
                                                    'base_score': scores['base_score'],
         | 
| 926 | 
            +
                                                    'bonus_score': scores['bonus_score'],
         | 
| 927 | 
            +
                                                    'characteristics_score': characteristics_score,
         | 
| 928 | 
            +
                                                    'is_preferred': False,
         | 
| 929 | 
            +
                                                    'priority': 2,
         | 
| 930 | 
            +
                                                    'health_score': self._calculate_health_score(breed_name),
         | 
| 931 | 
            +
                                                    'reason': f"Similar to {preferred_breed}"
         | 
| 932 | 
            +
                                                })
         | 
| 933 | 
            +
             | 
| 934 | 
            +
                        # 如果沒有找到偏好品種或需要更多匹配
         | 
| 935 | 
            +
                        if len(matches) < top_n:
         | 
| 936 | 
            +
                            general_matches = self._general_matching(description, weights, top_n - len(matches))
         | 
| 937 | 
            +
                            for match in general_matches:
         | 
| 938 | 
            +
                                if match['breed'] not in [m['breed'] for m in matches]:
         | 
| 939 | 
            +
                                    match['priority'] = 3
         | 
| 940 | 
            +
                                    if match['final_score'] >= 0.4:  # 分數門檻
         | 
| 941 | 
            +
                                        matches.append(match)
         | 
| 942 | 
            +
             | 
| 943 | 
            +
                        # 最終排序
         | 
| 944 | 
            +
                        matches.sort(key=lambda x: (
         | 
| 945 | 
            +
                            -x.get('characteristics_score', 0),  # 首先考慮特徵匹配度
         | 
| 946 | 
            +
                            -x.get('final_score', 0),           # 然後是總分
         | 
| 947 | 
            +
                            -x.get('base_score', 0),            # 最後是基礎分數
         | 
| 948 | 
            +
                            x.get('breed', '')                  # 字母順序
         | 
| 949 | 
            +
                        ))
         | 
| 950 | 
            +
             | 
| 951 | 
            +
                        # 取前N個結果
         | 
| 952 | 
            +
                        final_matches = matches[:top_n]
         | 
| 953 | 
            +
             | 
| 954 | 
            +
                        # 更新排名
         | 
| 955 | 
            +
                        for i, match in enumerate(final_matches, 1):
         | 
| 956 | 
            +
                            match['rank'] = i
         | 
| 957 | 
            +
             | 
| 958 | 
            +
                        return final_matches
         | 
| 959 | 
            +
             | 
| 960 | 
            +
                    except Exception as e:
         | 
| 961 | 
            +
                        print(f"Error in match_user_preference: {str(e)}")
         | 
| 962 | 
            +
                        return []
         | 
