Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,15 +3,15 @@ import numpy as np
|
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
| 5 |
import gradio as gr
|
| 6 |
-
|
| 7 |
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
|
| 8 |
from torchvision.ops import nms, box_iou
|
| 9 |
import torch.nn.functional as F
|
| 10 |
from torchvision import transforms
|
| 11 |
from PIL import Image, ImageDraw, ImageFont, ImageFilter
|
| 12 |
-
from dog_database import get_dog_description
|
| 13 |
from breed_health_info import breed_health_info
|
| 14 |
from breed_noise_info import breed_noise_info
|
|
|
|
| 15 |
from scoring_calculation_system import UserPreferences
|
| 16 |
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
|
| 17 |
from history_manager import UserHistoryManager
|
|
@@ -42,19 +42,19 @@ model_yolo = YOLO('yolov8l.pt')
|
|
| 42 |
history_manager = UserHistoryManager()
|
| 43 |
|
| 44 |
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
|
| 45 |
-
"Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog",
|
| 46 |
"Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
|
| 47 |
"Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
|
| 48 |
-
"Chihuahua", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
|
| 49 |
"English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
|
| 50 |
"German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
|
| 51 |
-
"Greater_Swiss_Mountain_Dog", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
|
| 52 |
"Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
|
| 53 |
"Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
|
| 54 |
"Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
|
| 55 |
"Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
|
| 56 |
"Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
|
| 57 |
-
"Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog",
|
| 58 |
"Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
|
| 59 |
"Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
|
| 60 |
"Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
|
|
@@ -68,6 +68,7 @@ dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staff
|
|
| 68 |
"Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
|
| 69 |
"Wire-Haired_Fox_Terrier"]
|
| 70 |
|
|
|
|
| 71 |
class MultiHeadAttention(nn.Module):
|
| 72 |
|
| 73 |
def __init__(self, in_dim, num_heads=8):
|
|
@@ -122,15 +123,19 @@ class BaseModel(nn.Module):
|
|
| 122 |
logits = self.classifier(attended_features)
|
| 123 |
return logits, attended_features
|
| 124 |
|
| 125 |
-
|
| 126 |
-
num_classes =
|
| 127 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 128 |
-
model = BaseModel(num_classes=num_classes, device=device)
|
| 129 |
|
| 130 |
-
|
| 131 |
-
model.
|
| 132 |
|
| 133 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
model.eval()
|
| 135 |
|
| 136 |
# Image preprocessing function
|
|
@@ -149,24 +154,38 @@ def preprocess_image(image):
|
|
| 149 |
return transform(image).unsqueeze(0)
|
| 150 |
|
| 151 |
async def predict_single_dog(image):
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
with torch.no_grad():
|
| 154 |
-
|
| 155 |
-
logits =
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
| 171 |
dogs = []
|
| 172 |
boxes = []
|
|
@@ -193,7 +212,6 @@ async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.45):
|
|
| 193 |
|
| 194 |
return dogs
|
| 195 |
|
| 196 |
-
|
| 197 |
def non_max_suppression(boxes, iou_threshold):
|
| 198 |
keep = []
|
| 199 |
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
|
@@ -218,52 +236,6 @@ def calculate_iou(box1, box2):
|
|
| 218 |
return iou
|
| 219 |
|
| 220 |
|
| 221 |
-
async def process_single_dog(image):
|
| 222 |
-
"""Process a single dog image and return breed predictions and HTML output."""
|
| 223 |
-
top1_prob, topk_breeds, relative_probs = await predict_single_dog(image)
|
| 224 |
-
|
| 225 |
-
# Case 1: Low confidence - unclear image or breed not in dataset
|
| 226 |
-
if top1_prob < 0.2:
|
| 227 |
-
error_message = format_warning_html(
|
| 228 |
-
'The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.'
|
| 229 |
-
)
|
| 230 |
-
initial_state = {
|
| 231 |
-
"explanation": error_message,
|
| 232 |
-
"image": None,
|
| 233 |
-
"is_multi_dog": False
|
| 234 |
-
}
|
| 235 |
-
return error_message, None, initial_state
|
| 236 |
-
|
| 237 |
-
breed = topk_breeds[0]
|
| 238 |
-
|
| 239 |
-
# Case 2: High confidence - single breed result
|
| 240 |
-
if top1_prob >= 0.45:
|
| 241 |
-
description = get_dog_description(breed)
|
| 242 |
-
html_content = format_single_dog_result(breed, description)
|
| 243 |
-
initial_state = {
|
| 244 |
-
"explanation": html_content,
|
| 245 |
-
"image": image,
|
| 246 |
-
"is_multi_dog": False
|
| 247 |
-
}
|
| 248 |
-
return html_content, image, initial_state
|
| 249 |
-
|
| 250 |
-
# Case 3: Medium confidence - show top 3 breeds with relative probabilities
|
| 251 |
-
description = get_dog_description(breed)
|
| 252 |
-
breeds_html = format_multiple_breeds_result(
|
| 253 |
-
topk_breeds=topk_breeds,
|
| 254 |
-
relative_probs=relative_probs,
|
| 255 |
-
color='#34C759', # 使用單狗顏色
|
| 256 |
-
index=1, # 因為是單狗處理,所以index為1
|
| 257 |
-
get_dog_description=get_dog_description
|
| 258 |
-
)
|
| 259 |
-
|
| 260 |
-
initial_state = {
|
| 261 |
-
"explanation": breeds_html,
|
| 262 |
-
"image": image,
|
| 263 |
-
"is_multi_dog": False
|
| 264 |
-
}
|
| 265 |
-
return breeds_html, image, initial_state
|
| 266 |
-
|
| 267 |
|
| 268 |
def create_breed_comparison(breed1: str, breed2: str) -> dict:
|
| 269 |
breed1_info = get_dog_description(breed1)
|
|
@@ -353,21 +325,46 @@ async def predict(image):
|
|
| 353 |
top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image)
|
| 354 |
combined_confidence = detection_confidence * top1_prob
|
| 355 |
|
| 356 |
-
# Format results based on confidence
|
| 357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
dogs_info += format_error_message(color, i+1)
|
| 359 |
-
elif top1_prob >= 0.45:
|
| 360 |
-
breed = topk_breeds[0]
|
| 361 |
-
description = get_dog_description(breed)
|
| 362 |
-
dogs_info += format_single_dog_result(breed, description, color)
|
| 363 |
-
else:
|
| 364 |
-
dogs_info += format_multiple_breeds_result(
|
| 365 |
-
topk_breeds,
|
| 366 |
-
relative_probs,
|
| 367 |
-
color,
|
| 368 |
-
i+1,
|
| 369 |
-
get_dog_description
|
| 370 |
-
)
|
| 371 |
|
| 372 |
# Wrap final HTML output
|
| 373 |
html_output = format_multi_dog_container(dogs_info)
|
|
@@ -422,6 +419,7 @@ def show_details_html(choice, previous_output, initial_state):
|
|
| 422 |
def main():
|
| 423 |
with gr.Blocks(css=get_css_styles()) as iface:
|
| 424 |
# Header HTML
|
|
|
|
| 425 |
gr.HTML("""
|
| 426 |
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
|
| 427 |
<h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
|
|
@@ -467,6 +465,7 @@ def main():
|
|
| 467 |
history_component=history_component
|
| 468 |
)
|
| 469 |
|
|
|
|
| 470 |
# 4. 最後創建歷史記錄標籤頁
|
| 471 |
create_history_tab(history_component)
|
| 472 |
|
|
|
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
| 5 |
import gradio as gr
|
| 6 |
+
import time
|
| 7 |
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
|
| 8 |
from torchvision.ops import nms, box_iou
|
| 9 |
import torch.nn.functional as F
|
| 10 |
from torchvision import transforms
|
| 11 |
from PIL import Image, ImageDraw, ImageFont, ImageFilter
|
|
|
|
| 12 |
from breed_health_info import breed_health_info
|
| 13 |
from breed_noise_info import breed_noise_info
|
| 14 |
+
from dog_database import get_dog_description
|
| 15 |
from scoring_calculation_system import UserPreferences
|
| 16 |
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
|
| 17 |
from history_manager import UserHistoryManager
|
|
|
|
| 42 |
history_manager = UserHistoryManager()
|
| 43 |
|
| 44 |
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
|
| 45 |
+
"Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise",
|
| 46 |
"Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
|
| 47 |
"Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
|
| 48 |
+
"Chihuahua", "Dachshund", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
|
| 49 |
"English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
|
| 50 |
"German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
|
| 51 |
+
"Greater_Swiss_Mountain_Dog","Havanese", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
|
| 52 |
"Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
|
| 53 |
"Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
|
| 54 |
"Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
|
| 55 |
"Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
|
| 56 |
"Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
|
| 57 |
+
"Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shiba_Inu",
|
| 58 |
"Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
|
| 59 |
"Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
|
| 60 |
"Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
|
|
|
|
| 68 |
"Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
|
| 69 |
"Wire-Haired_Fox_Terrier"]
|
| 70 |
|
| 71 |
+
|
| 72 |
class MultiHeadAttention(nn.Module):
|
| 73 |
|
| 74 |
def __init__(self, in_dim, num_heads=8):
|
|
|
|
| 123 |
logits = self.classifier(attended_features)
|
| 124 |
return logits, attended_features
|
| 125 |
|
| 126 |
+
# Initialize model
|
| 127 |
+
num_classes = len(dog_breeds)
|
| 128 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
| 129 |
|
| 130 |
+
# Initialize base model
|
| 131 |
+
model = BaseModel(num_classes=num_classes, device=device).to(device)
|
| 132 |
|
| 133 |
+
# Load model path
|
| 134 |
+
model_path = "124_best_model_dog.pth"
|
| 135 |
+
checkpoint = torch.load(model_path, map_location=device)
|
| 136 |
+
|
| 137 |
+
# Load model state
|
| 138 |
+
model.load_state_dict(checkpoint["base_model"], strict=False)
|
| 139 |
model.eval()
|
| 140 |
|
| 141 |
# Image preprocessing function
|
|
|
|
| 154 |
return transform(image).unsqueeze(0)
|
| 155 |
|
| 156 |
async def predict_single_dog(image):
|
| 157 |
+
"""
|
| 158 |
+
Predicts the dog breed using only the classifier.
|
| 159 |
+
Args:
|
| 160 |
+
image: PIL Image or numpy array
|
| 161 |
+
Returns:
|
| 162 |
+
tuple: (top1_prob, topk_breeds, relative_probs)
|
| 163 |
+
"""
|
| 164 |
+
image_tensor = preprocess_image(image).to(device)
|
| 165 |
+
|
| 166 |
with torch.no_grad():
|
| 167 |
+
# Get model outputs (只使用logits,不需要features)
|
| 168 |
+
logits = model(image_tensor)[0] # 如果model仍返回tuple,取第一個元素
|
| 169 |
+
probs = F.softmax(logits, dim=1)
|
| 170 |
+
|
| 171 |
+
# Classifier prediction
|
| 172 |
+
top5_prob, top5_idx = torch.topk(probs, k=5)
|
| 173 |
+
breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
|
| 174 |
+
probabilities = [prob.item() for prob in top5_prob[0]]
|
| 175 |
+
|
| 176 |
+
# Calculate relative probabilities
|
| 177 |
+
sum_probs = sum(probabilities[:3]) # 只取前三個來計算相對概率
|
| 178 |
+
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
|
| 179 |
+
|
| 180 |
+
# Debug output
|
| 181 |
+
print("\nClassifier Predictions:")
|
| 182 |
+
for breed, prob in zip(breeds[:5], probabilities[:5]):
|
| 183 |
+
print(f"{breed}: {prob:.4f}")
|
| 184 |
+
|
| 185 |
+
return probabilities[0], breeds[:3], relative_probs
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
|
| 189 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
| 190 |
dogs = []
|
| 191 |
boxes = []
|
|
|
|
| 212 |
|
| 213 |
return dogs
|
| 214 |
|
|
|
|
| 215 |
def non_max_suppression(boxes, iou_threshold):
|
| 216 |
keep = []
|
| 217 |
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
|
|
|
| 236 |
return iou
|
| 237 |
|
| 238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
def create_breed_comparison(breed1: str, breed2: str) -> dict:
|
| 241 |
breed1_info = get_dog_description(breed1)
|
|
|
|
| 325 |
top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image)
|
| 326 |
combined_confidence = detection_confidence * top1_prob
|
| 327 |
|
| 328 |
+
# Format results based on confidence with error handling
|
| 329 |
+
try:
|
| 330 |
+
if combined_confidence < 0.2:
|
| 331 |
+
dogs_info += format_error_message(color, i+1)
|
| 332 |
+
elif top1_prob >= 0.45:
|
| 333 |
+
breed = topk_breeds[0]
|
| 334 |
+
description = get_dog_description(breed)
|
| 335 |
+
# Handle missing breed description
|
| 336 |
+
if description is None:
|
| 337 |
+
# 如果沒有描述,創建一個基本描述
|
| 338 |
+
description = {
|
| 339 |
+
"Name": breed,
|
| 340 |
+
"Size": "Unknown",
|
| 341 |
+
"Exercise Needs": "Unknown",
|
| 342 |
+
"Grooming Needs": "Unknown",
|
| 343 |
+
"Care Level": "Unknown",
|
| 344 |
+
"Good with Children": "Unknown",
|
| 345 |
+
"Description": f"Identified as {breed.replace('_', ' ')}"
|
| 346 |
+
}
|
| 347 |
+
dogs_info += format_single_dog_result(breed, description, color)
|
| 348 |
+
else:
|
| 349 |
+
# 修改format_multiple_breeds_result的調用,包含錯誤處理
|
| 350 |
+
dogs_info += format_multiple_breeds_result(
|
| 351 |
+
topk_breeds,
|
| 352 |
+
relative_probs,
|
| 353 |
+
color,
|
| 354 |
+
i+1,
|
| 355 |
+
lambda breed: get_dog_description(breed) or {
|
| 356 |
+
"Name": breed,
|
| 357 |
+
"Size": "Unknown",
|
| 358 |
+
"Exercise Needs": "Unknown",
|
| 359 |
+
"Grooming Needs": "Unknown",
|
| 360 |
+
"Care Level": "Unknown",
|
| 361 |
+
"Good with Children": "Unknown",
|
| 362 |
+
"Description": f"Identified as {breed.replace('_', ' ')}"
|
| 363 |
+
}
|
| 364 |
+
)
|
| 365 |
+
except Exception as e:
|
| 366 |
+
print(f"Error formatting results for dog {i+1}: {str(e)}")
|
| 367 |
dogs_info += format_error_message(color, i+1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
# Wrap final HTML output
|
| 370 |
html_output = format_multi_dog_container(dogs_info)
|
|
|
|
| 419 |
def main():
|
| 420 |
with gr.Blocks(css=get_css_styles()) as iface:
|
| 421 |
# Header HTML
|
| 422 |
+
|
| 423 |
gr.HTML("""
|
| 424 |
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
|
| 425 |
<h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
|
|
|
|
| 465 |
history_component=history_component
|
| 466 |
)
|
| 467 |
|
| 468 |
+
|
| 469 |
# 4. 最後創建歷史記錄標籤頁
|
| 470 |
create_history_tab(history_component)
|
| 471 |
|