Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,10 +10,9 @@ device = torch.device('cpu')
|
|
10 |
# Define ResNet-50 Architecture
|
11 |
model = models.resnet50(weights=None)
|
12 |
|
13 |
-
#
|
14 |
model.fc = torch.nn.Linear(2048, 37)
|
15 |
|
16 |
-
# Load Model weights
|
17 |
model.load_state_dict(torch.load('./resnet50_model_weights.pth', map_location=device))
|
18 |
|
19 |
model.eval()
|
@@ -24,6 +23,7 @@ transform = transforms.Compose([
|
|
24 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
25 |
])
|
26 |
|
|
|
27 |
class_names = ['Abyssinian (阿比西尼亞貓)', 'American Bulldog (美國鬥牛犬)', 'American Pit Bull Terrier (美國比特鬥牛梗)',
|
28 |
'Basset Hound (巴吉度獵犬)', 'Beagle (米格魯)', 'Bengal (孟加拉貓)', 'Birman (緬甸貓)', 'Bombay (孟買貓)',
|
29 |
'Boxer (拳師犬)', 'British Shorthair (英國短毛貓)', 'Chihuahua (吉娃娃)', 'Egyptian Mau (埃及貓)',
|
@@ -35,38 +35,48 @@ class_names = ['Abyssinian (阿比西尼亞貓)', 'American Bulldog (美國鬥
|
|
35 |
'Siamese (暹羅貓)', 'Sphynx (無毛貓)', 'Staffordshire Bull Terrier (史塔福郡鬥牛犬)',
|
36 |
'Wheaten Terrier (小麥色梗)', 'Yorkshire Terrier (約克夏犬)']
|
37 |
|
38 |
-
#
|
39 |
def classify_image(image):
|
40 |
-
|
|
|
41 |
with torch.no_grad():
|
|
|
42 |
outputs = model(image)
|
43 |
-
|
44 |
-
probabilities = torch.nn.functional.softmax(
|
|
|
|
|
|
|
45 |
predictions = [(class_names[idx], prob.item()) for idx, prob in zip(indices[0], probabilities[0])]
|
46 |
-
return {class_name: prob for class_name, prob in predictions}
|
47 |
-
|
48 |
|
|
|
49 |
examples_path = './examples'
|
50 |
|
|
|
51 |
if os.path.exists(examples_path):
|
52 |
print(f"[INFO] Found examples folder at {examples_path}")
|
53 |
else:
|
54 |
print(f"[ERROR] Examples folder not found at {examples_path}")
|
55 |
|
56 |
-
# Gradio
|
|
|
57 |
examples = [[examples_path + "/" + img] for img in os.listdir(examples_path)]
|
58 |
|
59 |
-
#
|
60 |
-
dropdown = gr.Dropdown(choices=class_names, label="
|
61 |
|
|
|
62 |
demo = gr.Interface(
|
63 |
fn=classify_image,
|
64 |
-
inputs=[gr.Image(type="pil")
|
65 |
-
outputs=[gr.Label(num_top_classes=3, label="Top 3 Predictions")],
|
66 |
examples=examples,
|
67 |
title='Oxford Pet 🐈🐕',
|
68 |
-
description='A ResNet50-based model for classifying 37 different pet breeds.',
|
69 |
-
article='[Oxford Project](https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/The%20Oxford-IIIT%20Pet%20Project)'
|
|
|
70 |
)
|
71 |
|
|
|
72 |
demo.launch()
|
|
|
10 |
# Define ResNet-50 Architecture
|
11 |
model = models.resnet50(weights=None)
|
12 |
|
13 |
+
# Revise fully connected layer to output 37 classes (num_classes = 37)
|
14 |
model.fc = torch.nn.Linear(2048, 37)
|
15 |
|
|
|
16 |
model.load_state_dict(torch.load('./resnet50_model_weights.pth', map_location=device))
|
17 |
|
18 |
model.eval()
|
|
|
23 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
24 |
])
|
25 |
|
26 |
+
# List of class names (37 dog and cat breeds)
|
27 |
class_names = ['Abyssinian (阿比西尼亞貓)', 'American Bulldog (美國鬥牛犬)', 'American Pit Bull Terrier (美國比特鬥牛梗)',
|
28 |
'Basset Hound (巴吉度獵犬)', 'Beagle (米格魯)', 'Bengal (孟加拉貓)', 'Birman (緬甸貓)', 'Bombay (孟買貓)',
|
29 |
'Boxer (拳師犬)', 'British Shorthair (英國短毛貓)', 'Chihuahua (吉娃娃)', 'Egyptian Mau (埃及貓)',
|
|
|
35 |
'Siamese (暹羅貓)', 'Sphynx (無毛貓)', 'Staffordshire Bull Terrier (史塔福郡鬥牛犬)',
|
36 |
'Wheaten Terrier (小麥色梗)', 'Yorkshire Terrier (約克夏犬)']
|
37 |
|
38 |
+
# Prediction function
|
39 |
def classify_image(image):
|
40 |
+
# Apply transformation and add batch dimension
|
41 |
+
image = transform(image).unsqueeze(0).to(device)
|
42 |
with torch.no_grad():
|
43 |
+
# Make predictions using the model
|
44 |
outputs = model(image)
|
45 |
+
# Apply softmax to get probabilities
|
46 |
+
probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
47 |
+
# Get the top 3 predictions
|
48 |
+
probabilities, indices = torch.topk(probabilities, k=3)
|
49 |
+
# Return the class names with their corresponding probabilities
|
50 |
predictions = [(class_names[idx], prob.item()) for idx, prob in zip(indices[0], probabilities[0])]
|
51 |
+
return {class_name: prob for class_name, prob in predictions} # Return raw float numbers
|
|
|
52 |
|
53 |
+
# Path to the folder containing example images
|
54 |
examples_path = './examples'
|
55 |
|
56 |
+
# Check if the example images folder exists
|
57 |
if os.path.exists(examples_path):
|
58 |
print(f"[INFO] Found examples folder at {examples_path}")
|
59 |
else:
|
60 |
print(f"[ERROR] Examples folder not found at {examples_path}")
|
61 |
|
62 |
+
# Gradio interface
|
63 |
+
# Load example images from the folder
|
64 |
examples = [[examples_path + "/" + img] for img in os.listdir(examples_path)]
|
65 |
|
66 |
+
# Create dropdown menu for users to see available classes (as reference, no direct connection to prediction)
|
67 |
+
dropdown = gr.Dropdown(choices=class_names, label="Recognizable Breeds", type="value")
|
68 |
|
69 |
+
# Define Gradio Interface
|
70 |
demo = gr.Interface(
|
71 |
fn=classify_image,
|
72 |
+
inputs=[gr.Image(type="pil")], # Only image input is used for prediction
|
73 |
+
outputs=[gr.Label(num_top_classes=3, label="Top 3 Predictions")], # Outputs top 3 predictions with probabilities
|
74 |
examples=examples,
|
75 |
title='Oxford Pet 🐈🐕',
|
76 |
+
description='A ResNet50-based model for classifying 37 different pet breeds.',
|
77 |
+
article='[Oxford Project](https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/The%20Oxford-IIIT%20Pet%20Project)',
|
78 |
+
inputs_dropdown=dropdown # Dropdown used as a reference list
|
79 |
)
|
80 |
|
81 |
+
# Launch Gradio demo
|
82 |
demo.launch()
|